
DIFFERENCE TABLE – 5

Difference between ‘Macro’ and ‘Function’

S.

No

.

Attributes

MACRO
FUNCTION

1 Processing Macro is Preprocessed Function is Compiled

2 Type Checking No Yes

3 Code length Increases Unaffected

4 Side effect Yes No

5 Speed Faster Slower

6 Usefulness When small code is repeated many times When large code is to be written

7 Compile-Time Errors Does not check It checks

Difference between ‘Object-like-macro’ and ‘Function-like-Macro’

S.

No

.

OBJECT-LIKE-MACRO
FUNCTION-LIKE-MACRO

1 An object-like macro is an identifier that will be

replaced by a sequence of token (or piece of

code) in the program.

C also allows us to define a macro that look like a

function call. Therefore, this macro is referred as a

function-like macro.

2 As its name implied, the object-like macro is

similar to data object in code in term of its

usage. We typically use an object-like macro to

give a meaningful name to a constant.

The syntax of creating a function-like macro is

similar to object-like macro except you have to put

the parentheses () right after the macro name.

3 Syntax:

#define identifier string

Syntax:

#define identifier (arg1, arg2, … argn) string

4 Example:

#define MAX_SIZE 1000

Example:

#define min(a, b) ((a) < (b) ? (a) : (b))

Difference between ‘Array’ and ‘Pointer’

S.

No

.

Attributes

ARRAY
POINTER

1 Syntax data_type array_name[max_size]; data_type *pointer_var;

2 Example int arr[5]; int *p;

3 Working Stores the value of the variable of

homogeneous datatype in adjacent

memory locations

Store the address of the another

variable of same datatype

4 Generation An array of pointers can be generated. A pointer to an array can be

generated.

5 Capacity An array can store the number of

elements, mentioned in the size of array

variable.

A pointer variable can store the

address of only one variable at a

time.

