DIFFERENCE TABLE -5

Difference between ‘Macro’ and ‘Function’

Attributes MACRO FUNCTION

Processing Macro is Preprocessed Function is Compiled
Type Checking No Yes

Code length Increases Unaffected

Side effect Yes No

Speed Faster Slower
Usefulness When small code is repeated many times | When large code is to be written
Compile-Time Errors Does not check It checks

Difference between ‘Object-like-macro’ and ‘Function-like-Macro’

OBJECT-LIKE-MACRO FUNCTION-LIKE-MACRO

An object-like macro is an identifier that will be | C also allows us to define a macro that look like a
replaced by a sequence of token (or piece of [function call. Therefore, this macro is referred as a
code) in the program. function-like macro.

As its name implied, the object-like macro is | The syntax of creating a function-like macro is
similar to data object in code in term of its similar to object-like macro except you have to put

usage. We typically use an object-like macro to the parentheses () right after the macro name.
give a meaningful name to a constant.

Syntax: Syntax:

#define identifier string #define identifier (argl, arg2, ... argn) string
Example: Example:

#define MAX_SIZE 1000 #define min(a, b) ((a) < (b) ? (a) : (b))

Difference between ‘Array’ and ‘Pointer’

Attributes
ARRAY POINTER
Syntax data_type array_name[max_size]; data_type *pointer_var;
Example int arr[5]; int *p;
Working Stores the value of the variable of | Store the address of the another
homogeneous datatype in adjacent | variable of same datatype
memory locations

Generation An array of pointers can be generated. A pointer to an array can be
generated.
Capacity An array can store the number of [A pointer variable can store the

elements, mentioned in the size of array
variable.

address of only one variable at a
time.

