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SEQUENCE  AND   SERIES OF   

REAL NUMBERS 



What is a Sequence? 

 In mathematics a sequence is an ordered list , like a set, it contains 
members called elements or terms of sequence. Most precisely, a 
sequence of real numbers is defined as a function S: N            R, 
then for each n∈N, S(n) or 𝑆𝑛 is a real number. The real numbers 𝑆1 
𝑆2 ,𝑆3,……. ,𝑆𝑛 are called terms of sequence. A sequence may be 
written as *𝑆1 𝑆2 𝑆3……. 𝑆𝑛} or {𝑆𝑛}.  

  For example  

 The 𝑛𝑡ℎterm of the sequence {-5n} is 𝑆𝑛 = −5𝑛 then the sequence 
becomes {-5,-10, -15, ……..-5n…….}. 

 The 𝑛𝑡ℎ term of the sequence {𝑆𝑛} is 𝑆𝑛 =
𝑛

𝑛+1
,  the  sequence is 

{1,
2

3
,
3

4
, …}. 

 A sequence is also given by its recursion formula where 𝑆1 = 1and 

𝑆𝑛 = 3𝑆𝑛 , then the sequence is {1, 3, 3√3,……}. 



INFINITE SERIES 
 A series is , roughly speaking , a description of the operation of adding infinitely 

many quantities one after the other, to a given starting quantity.   
 An expression of the form  𝑎1 + 𝑎2 +⋯+𝑎𝑛 +⋯, where each 𝑎𝑛 is real numbers , 

in which each term is followed by another term is known as infinite series of real 
numbers. It is denoted by 𝑎𝑛

∞
𝑛=1   𝑜𝑟   𝑎𝑛 , here 𝑎𝑛 is 𝑛𝑡ℎterm  of the series.  

 The sum of  n terms of series is denoted by   𝑆𝑛 , thus 
 𝑆𝑛 = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 =  𝑎𝑛

𝑛
𝑛=1 . 

 

SEQUENCE OF PARTIAL SUM 

 
 Suppose  𝑎𝑛 is infinite series. We define a sequence *𝑆𝑛} as  follows: 

 𝑆1 = 𝑎1, 
 𝑆2 = 𝑎1 + 𝑎2, 
 𝑆3 = 𝑎1 + 𝑎2 + 𝑎3, 
 - 
 - 
 𝑆𝑛 = 𝑎1 + 𝑎2 + 𝑎3 +⋯+ 𝑎𝑛 and so on  
 The sequence *𝑆𝑛} is called a sequence of partial sums of series  𝑎𝑛. 

 
 
 



CONVERGENCE, DIVERGENCE AND 

OSCILLATION OF A SERIES 

1.  CONVERGENT : A series  𝑎𝑛 is said to be convergent if the 
sequence *𝑆𝑛} of partial sums of series   converges to a real number S. 
i.e. lim
𝑛→∞
𝑆𝑛 = 𝑆,where S is finite and unique. 

2. DIVERGENT: A series is said to be divergent if the sequence *𝑆𝑛}  of 
partial sum diverges to +∞ 𝑜𝑟 − ∞. i.e. i.e. lim

𝑛→∞
𝑆𝑛 = ±∞. 

3. OSCILLATORY: A series is oscillatory if sequence *𝑆𝑛} of partial sum 
of series oscillates  i.e. lim

𝑛→∞
𝑆𝑛 does not tend to unique limit. 

  For example:  consider the series 
1

1.2
+
1

2.3
+
1

3.4
+⋯ 

Here 𝑆𝑛 =
1

1.2
+
1

2.3
+
1

3.4
+⋯+

1

𝑛(𝑛+1)
 

               = 1 −
1

2
+
1

2
−
1

3
+
1

3
−
1

4
+⋯+

1

𝑛
−
1

𝑛+1
 

𝑆𝑛 = 1 −
1

𝑛+1
     lim
𝑛→∞
𝑆𝑛 = lim

𝑛→∞
1 −

1

𝑛+1
= 1 − 0 = 1 𝑓𝑖𝑛𝑖𝑡𝑒 . 

Hence the series converges to 1. 

 

 

 



   Consider the series 

 3𝑛 = 3 + 32 + 33 +⋯ 

Here  𝑆𝑛 = 3
𝑛 − 1 , lim

𝑛→∞
𝑆𝑛 = lim

𝑛→∞
3𝑛 − 1 = ∞. 

Hence the series is divergent. 
 
Example:  Consider the series   (−𝟏)𝒏−𝟏 .  
• Here 𝑎𝑛 = (−1)

𝑛−1    𝑛𝑜𝑤  𝑆1 = 𝑎1 = 1 
• 𝑆2 = 𝑎1 + 𝑎2 = 1 − 1 = 0, 
• 𝑆3 = 𝑎1 + 𝑎2 + 𝑎3 = 1 − 1 + 1 = 1,         𝑆4 = 0,       𝑆5 = 1… . 𝑠𝑜 𝑜𝑛. 
• Therefore *𝑆𝑛+ = 1,0,1,0, …     Which Oscillates between 0 and 1.So the series is 

oscillatory. 

Elementary Properties of series 
The alteration of a finite number of terms of a series has no effect on convergence and 
divergence. 
1. If a series converges or has an infinite sums, their sum is unique. 
2. Multiplication of the terms of a series by a nonzero constant K doesnot effect the 

convergence or divergence of a series. 

 𝐾𝑎𝑛 = 𝑘  𝑎𝑛

∞

𝑛=1

∞

𝑛=1

 

 
  



Necessary Condition For Convergence: 

 
Theorem:  If a series converges, its general term tends toward zero as n becomes 
infinity i.e. if the series  𝑎𝑛 converges , then lim𝑛→∞𝑎𝑛 = 0. But the converse is not 
true. 

Proof: let us consider the series  𝑎𝑛 . Consider *𝑆𝑛} be the sequence of partial sums of 
series  𝑎𝑛 . 

𝑆𝑛 = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1 + 𝑎𝑛 
𝑆𝑛−1 = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−2 + 𝑎𝑛−1 

𝑆𝑛 − 𝑆𝑛−1 = 𝑎𝑛 

Since the series   𝑎𝑛 converges , so *𝑆𝑛} converges  

Let  lim
𝑛→∞
𝑆𝑛 = 𝑠        𝑡𝑕𝑒𝑛 lim

𝑛→∞
𝑆𝑛−1 = 𝑠 

Therefore lim
𝑛→∞
𝑎𝑛 = lim

𝑛→∞
𝑆𝑛 − lim

𝑛→∞
𝑆𝑛−1         = 𝑠 − 𝑠 = 0 

Hence    lim
𝑛→∞
𝑎𝑛=0 

Thus the condition for convergence is necessary but not sufficient. 

Consider the harmonic series  

 
1

𝑛
= 1 +

1

2
+
1

3
+⋯+

1

𝑛
+⋯ 

Here        𝑎𝑛=
1

𝑛
                           lim

𝑛→∞
𝑎𝑛 = lim

𝑛→∞

1

𝑛
= 0 

But the series  
1

𝑛
 is divergent . (by p-test) 

 

 

 



RESULT FOR GEOMETRIC SERIES 
The geometric series 

 𝑟𝑛 = 1 + 𝑟 + 𝑟2 + 𝑟3 +⋯  (𝑟 > 0) 

is convergent if 𝑟 < 1  and  divergent if   𝑟 ≥ 1. 

Examples:  

  The series  
1

2𝑛
=
1

2
+
1

22
+⋯+

1

2𝑛
+⋯ is convergent. 

Here the series is G.P. series where common ratio 𝑟 = 1/2 < 1. so the above series converges. 

 The series  3𝑛 = 3 + 32 + 33 +⋯   is divergent, since 𝑟 = 3 > 1. 

 

POSITIVE TERM SERIES 
An infinite series whose terms are positive or more generally, a non negative series (a series 
whose terms are nonnegative) are called positive term series. 

Theorem: (A test for a positive series) 

A positive term series  𝑎𝑛 is convergent if and only if its sequence  *𝑆𝑛} of partial sum 
bounded above. 

Equivalently, a positive term series  𝑎𝑛 converges iff 𝑆𝑛 < 𝑘        ∀𝑛 ∈ 𝑁. 

Remark: Since monotonic sequence either converge or diverge but never oscillate. Therefore 
positive term series are either converge or diverge. 



Test for Divergence 
Theorem:  If  𝑎𝑛is a positive series such that lim

𝑛→∞
𝑎𝑛 ≠ 0, then the  𝑎𝑛 diverges. 

 

EXAMPLE(1): Test the convergence of series    𝑐𝑜𝑠
𝜋

2𝑛
∞
𝑛=1 . 

Here       𝑎𝑛 = 𝑐𝑜𝑠
𝜋

2𝑛
,          Then lim

𝑛→∞
𝑎𝑛 = lim

𝑛→∞
𝑐𝑜𝑠
𝜋

2𝑛
= cos0 = 1 ≠ 0. 

So by theorem lim
𝑛→∞
𝑎𝑛 ≠ 0 then the series is divergent. 

Example (2): consider the series 
1

𝑛
+
2

6
+⋯+

𝑛

2 𝑛+1
+⋯ 

Here 𝑎𝑛 =
𝑛

2 𝑛+1
        lim
𝑛→∞
𝑎𝑛 = lim

𝑛→∞

𝑛

2𝑛 1+1/𝑛

1/2
= lim
𝑛→∞

1

2 1+1/𝑛

1/2
 

 

=
1

2
≠ 0 

Hence the series is divergent. 

 

 

 



SOME COMPARISON TEST 

 

 FIRST COMPARISON TEST: 

Theorem: let  𝑎𝑛 and  𝑏𝑛be two positive term series such that 𝑎𝑛≤ 𝑘 𝑏𝑛    ∀𝑛 ≥ 𝑚 

(k being a fixed positive number and m a fixed positive integer. Then 
1.  If  𝑏𝑛 converges implies  𝑎𝑛converges. 
2. If   𝑎𝑛diverges implies  𝑏𝑛diverges. 

 

CONVERGENCE OF p-SERIES  
1

𝑛𝑝
 

The series  
𝟏

𝒏𝒑
∞
𝒏=𝟏 =

𝟏

𝟏𝒑
+
𝟏

𝟐𝒑
+⋯+

𝟏

𝒏𝒑
+⋯(𝐩 > 𝟎) 

Converges if (p >1) and diverges if  𝒑 ≤ 𝟏 . 
 

EXAMPLE  consider the series  𝑒−𝑛
2
 
𝑒𝑥 > 𝑥               ∀𝑥 > 0\ 

𝑒𝑛
2
> 𝑛2           ∀𝑛 

1

𝑒𝑛
2 <

1

𝑛2
                        𝑒−𝑛

2
<
1

𝑛2
                ∀𝑛 

Since  
1

𝑛2
∞
𝑛=1  converges (by p-series test here p=2 >1) 

 

Hence by first comparison test  𝑒−𝑛
2
 is convergent. 

 
 
 

 
 
 



EXAMPLE: Consider series  
1

𝑛2 log 𝑛
∞
𝑛=2   

Since we know that 
1

𝑛2 log 𝑛
>
1

𝑛2
∀𝑛 ≥ 2 

Here series  
1

𝑛2
∞
𝑛=1  is convergent since p = 2 > 1 

So by first comparison test 

 
1

𝑛2 log 𝑛
∞
𝑛=2       is convergent. 

LIMIT FORM TEST 
Theorem  Let  𝒂𝒏 and  𝒃𝒏 be two positive term series such that 

𝐥𝐢𝐦
𝒏→∞

𝒂𝒏
𝒃𝒏
= 𝒍      (𝒍 𝒊𝒔 𝒏𝒐𝒏𝒛𝒆𝒓𝒐 𝒂𝒏𝒅 𝒇𝒊𝒏𝒊𝒕𝒆) 

Then  𝒂𝒏  and  𝒃𝒏 converges and diverges together. 

i.e.  𝒃𝒏converges implies  𝒂𝒏 converges. 

 𝒃𝒏 diverges implies  𝒂𝒏 diverges. 

REMARKS: 

1. If l = 0  𝑜𝑟 𝑙 = ∞ then above test may not hold good. 

2.  To apply limit test on the series  𝑎𝑛, we have to select series  𝑏𝑛 called auxillary 
series (which is usually p-series) in which the 𝑛𝑡ℎ term of  𝑏𝑛 behaves as 𝑎𝑛, for 
large values of n written as 𝑎𝑛~𝑏𝑛. 



For large values of n we have  
1

𝑛2 + 1
~
1

𝑛2
 

 
1

𝑛+ 𝑛+1
~
1

𝑛+ 𝑛
=
1

2 𝑛
.  

We also take  𝑏𝑛 as 

𝑏𝑛 =
1

𝑛(𝑎−𝑏)
     where 𝑎 𝑎𝑛𝑑 𝑏 are higher indices of  n in denominator and numerator. 

For example 𝑎𝑛 =
𝑛

𝑛3+ 𝑛
  then 𝑏𝑛 =

1

𝑛3−1
=
1

𝑛2
 

And usually lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= 1. 

 The series   
1

𝑛𝑝
 converges if 𝑝 > 1 and diverges if 𝑝 ≤ 1. 

EXAMPLES  

consider the series  
1

1.2.3
+
3

2.3.4
+
5

3.4.5
+⋯ 

The  𝑛𝑡ℎ term  of the series is 

𝑎𝑛 =
2𝑛 − 1

𝑛(𝑛 + 1)(𝑛 + 2)
 

𝑎𝑛 =
2 −
1
𝑛

𝑛2(1 +
1
𝑛
)(1 +
2
𝑛
)
 

 

 

 



Let us consider the auxiliary series 𝑏𝑛 =
1

𝑛2
 

Then                  
𝑎𝑛

𝑏𝑛
=
(2𝑛−1)𝑛2

𝑛(𝑛+1)(𝑛+2)
 

𝒂𝒏
𝒃𝒏
=
𝑛(2𝑛 − 1) 

(𝑛 + 1)(𝑛 + 2)
 

lim
𝑛→∞

𝒂𝒏
𝒃𝒏
= lim
𝑛→∞

𝒏

𝟏 + 𝒏

𝟐𝒏 − 𝟏

𝒏 + 𝟐
 

 

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛
𝑏𝑛
= 𝑙𝑖𝑚
𝑛→∞

1

1 + 1 𝑛 

2 − 1\𝑛

1 + 2\𝑛
 

 

lim
𝑛→∞

𝒂𝒏
𝒃𝒏
=
𝟏

𝟏 + 𝟎

𝟐 − 𝟎

𝟏 + 𝟎
 

= 2 ≠ 0 𝑓𝑖𝑛𝑖𝑡𝑒  

So  𝑎𝑛  and  𝑏𝑛  converges or diverges together since the series  𝑏𝑛 =
1

𝑛2
 converges 

(because p=2>1). Hence  𝑎𝑛  converges. 

Example: Test the convergence of the series  𝑛4 + 1 − 𝑛4 − 1∞
𝑛=1  

Sol:  Here 𝑛𝑡ℎ term of the series will be 

𝑎𝑛 = 𝑛
4 + 1 − 𝑛4 − 1 ×

𝑛4 + 1 + 𝑛4 − 1 

𝑛4 + 1 + 𝑛4 − 1 
 

 

 

 



𝑎𝑛 =
𝑛4 + 1 − 𝑛4 − 1

𝑛4 + 1 + 𝑛4 − 1
          ~ 

2

n2 1 +
1
n4
+ n2 1 −

1
n4

 

Consider  𝑏𝑛 =
1

𝑛2
 then  

lim
𝑛→∞

𝑎𝑛
𝑏𝑛
= lim
𝑛→∞

2

1 +
1
𝑛4
+ 1 −

1
𝑛4

 

=
2

2
= 1 ≠ 0(𝑓𝑖𝑛𝑖𝑡𝑒) 

So  𝑎𝑛  and  𝑏𝑛  converges or diverges together . Since the series  𝑏
𝑛
=
1

𝑛2
  is convergent. Hence 

the given series is convergent. 

Cauchy’s  𝒏𝒕𝒉 Root Test:   

If    𝒂𝒏 be a positive term series such that 𝐥𝐢𝐦
𝐧→∞
𝒂𝒏
𝟏
𝒏 = 𝒍  then  

a.  𝑎𝑛 is convergent , if 𝒍 < 𝟏 

b.  𝑎𝑛 is divergent, if     𝒍 > 𝟏 

c. Test fail if  𝒍 = 𝟏. 

Example: 

Test the convergence of the series 

(i)  𝑛1\n − 1
𝑛∞

𝑛=1  

Solution: The   𝑛𝑡ℎterm of the series be  

𝑎𝑛 = 𝑛
1\n − 1

𝑛
 

 

 

 



Now by Cauchy’s 𝑛𝑡ℎ root test  
𝑎𝑛
1\n = 𝑛1\n − 1  

lim
𝑛→∞
𝑎𝑛
1\n = lim

𝑛→∞
𝑛1\n − 1  = 1 − 1 = 0 < 1 

Hence by  Cauchy’s 𝑛𝑡ℎ root test given series is convergent. 

Example:  Test the convergence of the series  

1

2
+
2

3
𝑥 +

3

4

2
𝑥2 +

4

5

3
𝑥3 +⋯   (x>0) 

Solution: Here 𝑎𝑛 =
𝑛+1

𝑛+2

𝑛
𝑥𝑛          (Neglecting the first term) 

By  Cauchy’s 𝑛𝑡ℎ root test 

lim
𝑛→∞
𝑎𝑛
1\n = lim

𝑛→∞

𝑛 + 1

𝑛 + 2
x = 𝑥 

Hence by  Cauchy’s 𝑛𝑡ℎ root test  𝑎𝑛  is convergent if x<1,  𝑎𝑛  is divergent if 
x>1 and test fail if x=1. 

Now when x=1  

𝑎𝑛 =
𝑛 + 1

𝑛 + 2

𝑛

1𝑛 

lim
𝑛→∞
𝑎𝑛 = lim

𝑛→∞

1 + 1\n

1 + 2\n

𝑛

=
𝑒

𝑒2
=
1

𝑒
≠ 0 

So the series  𝑎𝑛 is divergent at x=1. 

Finally the series converges if x<1and diverges if 𝑥 ≥ 1. 

 

 

  



Comparison of Ratio test Or Second Ratio Test: 

 If  𝒂𝒏 and  𝒃𝒏  are two series of positive terms such that 
𝒂𝒏

𝒂𝐧+𝟏
≥ 
𝒃𝒏

𝒃𝐧+𝟏
∀ 𝒏 ≥ 𝒎 

Then   (i)  𝒃𝒏  converges implies that  𝒂𝒏 converges. 

           (ii)  𝒂𝒏 diverges implies that  𝒃𝒏  𝐝𝐢𝐯𝐞𝐫𝐠𝐞𝐬. 

D’ Alemberts  Ratio Test: 
Suppose  𝒂𝒏  be series of positive term such that 

lim
𝒏→∞

𝒂𝐧

𝒂𝐧+𝟏
= 𝒍, then the series is  

(i) Convergent  if   𝒍 > 𝟏. 

(ii) Divergent  if    𝒍 < 𝟏. 

(iii) The test fail to describe the nature of the series if 𝒍 = 𝟏. 

Remarks: 
(i) This test  is applied when 𝑛𝑡ℎ term of the series involves factorials, product of several factors 

or combinations of powers and factorial. 

(ii) The another  equivalent form of ratio test is lim
𝒏→∞

𝒂𝐧+𝟏

𝒂𝐧
= 𝒍, if  𝒂𝒏  is series  of positive term 

then 

a.  𝒂𝒏  converges if 𝒍 < 𝟏. 

b.  𝒂𝒏  diverges if 𝒍 > 𝟏. 

c. Test fail if 𝒍 = 𝟏. 

 



(iii) If lim
𝒏→∞

𝒂𝐧

𝒂𝐧+𝟏
= ∞, then  𝒂𝒏  is convergent. 

(iv) If lim
𝒏→∞

𝒂𝐧+𝟏

𝒂𝐧
= 𝟎, then  𝒂𝒏  is convergent. 

Example: Test the convergence of the given series 
1

3
+
1.2

3.5
+
1.2.3

3.5.7
+
1.2.3.4

3.5.7.9
+ ⋯ 

Solution:  Here  𝒂𝒏= 
1.2.3.4…n

3.5.7.9…(2𝑛+1)
       [since 3.5.7.9… are in  A.P. 𝑛𝑡ℎ term is 3+2(n-

1)=2n+1] 

𝑎𝑛+1= 
1.2.3.4…n(𝑛+1)

3.5.7.9…(2𝑛+1)(2𝑛+3)
 

 

lim
𝑛→∞

𝑎𝑛
𝑎𝑛+1
= lim
𝑛→∞

2𝑛 + 3

𝑛 + 1
= lim
𝑛→∞

2 + 3\𝑛

1 + 1\𝑛
= 2 > 1 

Therefore by ratio test  𝒂𝒏  is convergent. 

Example: Test the convergence of the series  
𝑥𝑛

𝑥+𝑛
 

Solution: Here  𝒂𝒏 =
𝑥𝑛

𝑥+𝑛
  and 𝑎𝑛+1 =

𝑥𝑛+1

𝑥+(𝑛+1)
 

Now  lim
𝑛→∞

𝑎𝑛

𝑎𝑛+1
= lim
𝑛→∞

𝑥+𝑛+1

𝑥+𝑛

𝑥𝑛

𝑥𝑛+1
= lim
𝑛→∞

*1+ 1+𝑥 \n+

(1+𝑥\n)
 
1

𝑥
=
(1+0)

(1+0)
  
1

𝑥
=
1

𝑥
 

By Ratio test  𝒂𝒏  is convergent if 
1

𝑥
> 1   𝑖. 𝑒.   𝑥 < 1and  𝒂𝒏   is divergent if 

1

𝑥
< 1  𝑖. 𝑒. 𝑥 >

1.  For x=1 test becomes fail and we have    

𝒂𝒏 =
1

1 + 𝑛
 



𝑎𝑛 =
1

𝑛(1+1\𝑛)
     choose   𝑏𝑛 =

1

𝑛
 

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛
𝑏𝑛
= 𝑙𝑖𝑚
𝑛→∞

1

(1 + 1\𝑛)
= 1 ≠ 0(𝑓𝑖𝑛𝑖𝑡𝑒) 

By Comparison test  𝑎𝑛  and   𝑏𝑛  are either both convergent or divergent.  

Since auxillary series   𝑏𝑛  =
1

𝑛
 is divergent so  𝑎𝑛  is also divergent. 

Hence the series  𝑎𝑛  is convergent if  𝑥 < 1 and divergent if  𝑥 ≥ 1. 

Raabe’s Test: 
Suppose  𝒂𝒏  be series of positive term such that 

lim
𝒏→∞
𝒏
𝒂𝐧

𝒂𝐧+𝟏
− 𝟏 = 𝒍, then the series is  

(i) Convergent  if   𝒍 > 𝟏. 

(ii) Divergent  if    𝒍 < 𝟏. 

(iii) The test fail to describe the nature of the series if  𝒍 = 𝟏. 

Remarks: 
(i) Raabe’s Test  is Stronger than D’Alemberts Ratio Test. 

(ii) When Ratio test fail i.e. lim
𝒏→∞

𝒂𝐧

𝒂𝐧+𝟏
= 𝒍  then Rabbe’s test may apply. 

(iii) If lim
𝒏→∞
𝒏
𝒂𝐧

𝒂𝐧+𝟏
− 𝟏 = +∞   then series  𝒂𝒏   is convergent. 

(iv) If lim
𝒏→∞
𝒏
𝒂𝐧

𝒂𝐧+𝟏
− 𝟏 = −∞,   then series  𝒂𝒏   is divergent. 

 



Example:  Test the convergence of the series 

1 + 𝑎 +
𝑎(𝑎+1)

2!
+
𝑎(𝑎+1)(𝑎+2)

3!
+⋯ 

Solution: Here                                 𝒂𝒏 =
𝒂 𝒂+𝟏 𝒂+𝟐 +⋯+(𝒂+𝒏−𝟏)

𝒏!
 

𝒂
𝒏+𝟏=

𝒂 𝒂+𝟏 𝒂+𝟐 +⋯+(𝒂+𝒏)
𝒏+𝟏!

 

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛
𝑎𝑛+1
= 𝑙𝑖𝑚
𝑛→∞

𝒂 𝒂 + 𝟏 𝒂 + 𝟐 …(𝒂 + 𝒏 − 𝟏)

𝒏!
×

(𝒏 + 𝟏)!

𝒂 𝒂 + 𝟏 … . . (𝒂 + 𝒏)
 

 

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛
𝑎𝑛+1
= 𝑙𝑖𝑚
𝑛→∞

𝑛 + 1

𝑎 + 𝑛
= 𝑙𝑖𝑚
𝑛→∞

1 + 1\n

1 + 𝑎\n
= 1 

Therefore  D’Alembert’s ratio test fail it is not able to describe the nature of series.  

Thus we apply Rabbe’s test 

lim
𝒏→∞
𝒏
𝒂𝐧
𝒂𝐧+𝟏
− 𝟏 = lim

𝒏→∞
𝒏
𝒏 + 𝟏

𝒂 + 𝒏
− 𝟏 = lim

𝒏→∞

𝒏

𝒏

𝟏 − 𝒂

𝟏 + 𝒂\n
 

 

lim
𝒏→∞
𝒏
𝒂𝐧
𝒂𝐧+𝟏
− 𝟏 = 𝟏 − 𝒂  

So the series is convergent if 𝟏 − 𝒂 > 𝟏 𝒊. 𝒆. 𝒂 < 𝟎 and divergent if 𝟏 − 𝒂 < 𝟏 𝒊. 𝒆. 𝒂 >
𝟎 and test fail if 𝟏 − 𝒂 = 𝟏 𝒊. 𝒆.  𝒂 = 𝟎 . 

Now if 𝒂 = 𝟎 then the series contains only first term and therefore the convergent. 

Hence finally the series is convergent if 𝒂 ≤ 𝟎 and divergent if 𝒂 > 𝟎. 



Example:  Test the convergence of series  𝑥𝑛 log 𝑛 𝑝 

Solution: Here 𝑎𝑛 = 𝑥
𝑛 log 𝑥 𝑝             𝑎𝑛+1= 𝑥

𝑛+1 log(𝑛 + 1) 𝑝 

 

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛
𝑎𝑛+1
= 𝑙𝑖𝑚
𝑛→∞

𝑥𝑛 log 𝑥 𝑝

𝑥𝑛+1 log(𝑛 + 1) 𝑝
= 𝑙𝑖𝑚
𝑛→∞

𝟏

𝒙

log(𝒏 + 𝟏) 𝒑

(log 𝒏)𝒑

−𝟏

 

 

𝑙𝑖𝑚
𝑎𝑛
𝑎𝑛+1
𝑛→∞

= 𝑙𝑖𝑚
𝑛→∞

𝟏

𝒙

log 𝒏(𝟏 + 𝟏\n)

log 𝒏

−𝒑

= 𝑙𝑖𝑚
𝑛→∞

𝟏

𝒙

log 𝒏 + log( 1 + 1\n

log 𝒏

−𝒑

 

 

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛
𝑎𝑛+1
= 𝑙𝑖𝑚
𝑛→∞

𝟏

𝒙

log 𝒏 +
𝟏
𝒏
−
𝟏
𝟐𝒏𝟐
+⋯

log𝒏

−𝒑

 

 

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛
𝑎𝑛+1
= 𝑙𝑖𝑚
𝑛→∞

𝟏

𝒙
𝟏 +

𝟏

nlog𝒏
−
𝟏

𝟐𝒏𝟐log 𝒏
+⋯

−𝒑

 

 

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛
𝑎𝑛+1
= 𝑙𝑖𝑚
𝑛→∞

𝟏

𝒙
𝟏 −

𝒑

nlog 𝒏
+
𝑷

𝟐𝒏𝟐log 𝒏
− ⋯ =

𝟏

𝒙
 

Hence  by ratio test the series is convergent if 
𝟏

𝒙
> 𝟏  𝒊. 𝒆. 𝒙 < 𝟏  and divergent if 

𝟏

𝒙
< 𝟏 𝒊. 𝒆. 𝒙 > 𝟏. Test fail when x=1. 

For x=1, Applying Rabbe’s test  

 

 

 



lim
𝒏→∞
𝒏
𝒂𝐧
𝒂𝐧+𝟏
− 𝟏 = lim

𝒏→∞
𝒏 𝟏 −

𝒑

nlog𝒏
+
𝒑

𝟐𝒏𝟐log 𝒏
−⋯− 𝟏  

= lim
𝒏→∞
 
−𝒏

𝒏

𝒑

log𝒏
−
𝒑

2nlog𝒏
−⋯ = 0 < 1 

So by Raabe’s test the series diverges if  x=1. Hence finally series converges if x<1 and 
diverges if 𝑥 ≥ 1.   

Example: Test the convergence of the series 

1 +
𝑝

𝑞
+
𝑝(𝑝 + 1)

𝑞(𝑞 + 1)
+
𝑝(𝑝 + 1)(𝑝 + 2)

𝑞 𝑞 + 1 (𝑞 + 2)
+ ⋯ 𝑃 > 0 𝑞 > 0  

Solution: Neglecting  First term  

𝑎𝑛=
𝑝 𝑝+1 𝑝+2 …(𝑝+𝑛−1)

𝑞 𝑞+1 𝑞+2 …(𝑞+𝑛−1)
,                 𝑎𝑛+1=

𝑝 𝑝+1 𝑝+2 …(𝑝+𝑛−1)(𝑝+𝑛)

𝑞 𝑞+1 𝑞+2 …(𝑞+𝑛−1)(𝑞+𝑛)
 

 

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛
𝑎𝑛+1
= 𝑙𝑖𝑚
𝑛→∞

𝑞 + 𝑛

𝑝 + 𝑛
= 𝑙𝑖𝑚
𝑛→∞

1 + 𝑞\n

1 + 𝑝\n
= 1 

So D’Alembert’s test fail Now applying Raabe’s test 

lim
𝒏→∞
𝒏
𝒂𝐧
𝒂𝐧+𝟏
− 𝟏 = lim

𝒏→∞
n
𝑞 + 𝑛

𝑝 + 𝑛
− 1 = lim

𝒏→∞
n
𝑞 − 𝑝

𝑝 + 𝑛
= 𝑞 − 𝑝 

By Raabe’s test the series is convergent if 𝑞 − 𝑝 > 1 i. e. q > 1 + p  and divergent if  

𝑞 − 𝑝 < 1   𝑖. 𝑒. 𝑞 > 1 + 𝑝. The test fail if 𝑞 − 𝑝 = 1  𝑖. 𝑒.   𝑞 = 1 + 𝑝. 

 

𝑎𝑛 =
𝑝 𝑝 + 1 𝑝 + 1 … (𝑝 + 𝑛 − 1)

𝑝 + 1 𝑝 + 2 … (𝑝 + 𝑛 − 1)(𝑝 + 𝑛)
 

 

 

 

 

 

   

 



𝑎𝑛 =
𝑝

 (𝑝+𝑛)
                Let  𝑏𝑛 =

1

 𝑛
 

Then  𝑙𝑖𝑚
𝑛→∞

𝑎𝑛

𝑏𝑛
= 𝑙𝑖𝑚
𝑛→∞

𝑝𝑛

𝑝+𝑛
= 𝑙𝑖𝑚
𝑛→∞

𝑝𝑛

𝑛(1+𝑝\n)
= 𝑙𝑖𝑚
𝑛→∞

𝑝

1+𝑝\n
= 𝑝 > 0 

So by comparison test  𝒂𝒏  converges or diverges. Here series  𝒃𝒏 =  
𝟏

𝒏
   divergent. 

Hence  𝒂𝒏  diverges when q=1+p. 

Therefore finally the series is convergent if q>1+p and diverges if 𝑞 ≤ 1 + 𝑝.  

Logarithmic Test: 
Suppose  𝒂𝒏  be series of positive term such that 

𝒍𝒊𝒎
𝒏→∞
𝒏 𝒍𝒐𝒈

𝒂𝒏

𝒂𝒏+𝟏
= 𝒍, then the series is  

(i) Convergent  if   𝒍 > 𝟏. 

(ii) Divergent  if    𝒍 < 𝟏. 

(iii) The test fail to describe the nature of the series if 𝒍 = 𝟏. 

Remarks: 
(i) Logarithmic test applied only when ratio test fails and it involves the exponential ‘e’. 

(ii) Logarithmic test is alternative form of Raabe’s test. 

 

  



De Morgans and Bertrand’s Test (D&B Test): 
Suppose  𝒂𝒏  be series of positive term such that 

lim
𝒏→∞

𝒏
𝒂𝐧

𝒂𝐧+𝟏
− 𝟏 − 𝟏 𝒍𝒐𝒈𝒏 = 𝒍, then the series is  

(i) Convergent  if   𝒍 > 𝟏. 

(ii) Divergent  if    𝒍 < 𝟏. 

Remark: 

This test is applied only when D’Alembert’s Ratio test and Raab’s test fail to describe 
nature of the series. 

Higher(Second) Logarithmic  Ratio Test: 

OR 

Altenative To Bertrand’s Test: 
Suppose  𝒂𝒏  be series of positive term such that 

lim
𝒏→∞

𝒏 𝒍𝒐𝒈
𝒂𝐧

𝒂𝐧+𝟏
− 𝟏 𝒍𝒐𝒈𝒏 = 𝒍, then the series is  

(i) Convergent  if   𝒍 > 𝟏. 

(ii) Divergent  if    𝒍 < 𝟏. 

Remark: 

This test applied when Logarithmic test failed.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ratio Test 

Comparison Test Test For Divergence 

Raabe’s Test 

D &  B Test 

Logarithmic Test 

Higher Logarithmic Test 



Example: Test the convergence of following series  

(i) 1 +
𝑥

1!
+
22

2!
𝑥2 +

33

3!
𝑥3 +⋯ 

(ii) (1)𝑝+
1

2

𝑝
+
1.3

2.4

𝑝
+⋯ 

Solution: Here 𝑎𝑛 =
𝑛𝑛𝑥𝑛

𝑛!
    𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝐹𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚  

𝑎𝑛+1 =
(𝑛 + 1)𝑛+1𝑥𝑛+1

𝑛 + 1 !
 

lim
𝒏→∞

𝒂𝐧
𝒂𝐧+𝟏
= lim
𝒏→∞

𝒏

𝒏 + 𝟏

𝒏 𝟏

𝒙
= lim
𝒏→∞
𝟏 + 𝟏\n −𝒏

𝟏

𝒙
=
𝟏

𝒆𝒙
 

By D’Alembert’s Ratio Test the series is convergent if 
𝟏

𝒆𝒙
> 𝟏 𝒊. 𝒆. 𝒙 < 𝟏\e and divergent if 

𝟏

𝒆𝒙
< 𝟏 𝒊. 𝒆. 𝒙 >

𝟏

𝒆
  and the test fail if x=1\e. 

Now when 𝑥 =
1

𝑒
 

𝒂𝐧
𝒂𝐧+𝟏
= 𝒆 𝟏 + 𝟏\n −𝒏 

 

𝒏𝒍𝒐𝒈
𝒂𝐧
𝒂𝐧+𝟏
= nlog 𝒆 − 𝒏𝟐 log(𝟏 + 𝟏\n) 

𝒏 log
𝒂𝐧
𝒂𝐧+𝟏
= 𝒏 − 𝒏𝟐 𝟏\n − 𝟏\𝟐𝒏𝟐 + 𝟏\𝟑𝒏𝟑 −⋯  

lim
𝒏→∞
𝒏 log

𝒂𝐧
𝒂𝐧+𝟏
= lim
𝒏→∞

𝟏

𝟐
−
𝟏

𝟑𝒏
+⋯ =

𝟏

𝟐
< 𝟏 

So by logarithmic test, given series is divergent if x=1\e 

Finally given series is convergent if 𝒙 <
𝟏

𝒆
 and diverges if 𝒙 ≥

𝟏

𝒆
. 



(II). Here 𝑎𝑛 =
1.3.5….(2𝑛−1)

2.4.6….2𝑛

𝑝
           𝑎𝑛+1 =

1.3.5….(2𝑛+1)

2.4.6….2𝑛+2

𝑝
 

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛
𝑎𝑛+1
= 𝑙𝑖𝑚
𝑛→∞

(2𝑛 + 2)

2𝑛 + 1

𝑝

= 1 

So D’Alembert’s test fail to describe nature of series. Now we applying Logarithmic 
test: 

𝑛 log
𝑎𝑛
𝑎𝑛+1
= 𝑛 log

(2𝑛 + 2)

2𝑛 + 1

𝑝

= 𝑛𝑝 log
(1 + 1\𝑛)

(1 + 1\2𝑛)
 

𝑙𝑖𝑚
𝑛→∞
𝑛 𝑙𝑜𝑔

𝑎𝑛
𝑎𝑛+1
= 𝑙𝑖𝑚
𝑛→∞
𝑛𝑝
1

𝑛
−
1

2𝑛2
+
1

3𝑛3
−⋯ −

1

2𝑛
−
1

222𝑛2
+
1

323𝑛3
−⋯  

= 𝑙𝑖𝑚
𝑛→∞
p
1

2
−
3

8𝑛
+
7

24𝑛2
−⋯ =

𝑝

2
 

So by Logarithmic test, the series is convergent if 
𝑝

2
> 1  i. e.  p > 2 and if 

𝑝

2
<

1  𝑖. 𝑒. 𝑝 < 2   and test fail at p=2. 

     Now applying Higher Logarithmic Test 

 

𝑛 𝑙𝑜𝑔
𝑎𝑛
𝑎𝑛+1
− 1 = 2

1

2
−
3

8𝑛
+
7

24𝑛2
−⋯ − 1 

𝑙𝑖𝑚
𝑛→∞
𝑛 𝑙𝑜𝑔

𝑎𝑛
𝑎𝑛+1
− 1 log 𝑛 = 𝑙𝑖𝑚

𝑛→∞
−
3

4
+
7

12𝑛
− ⋯

log 𝑛

𝑛
= 0 < 1 

Therefore by Higher Logarithmic Test the series is divergent if p=2. 

Thus finally given series converges if p>2 and diverges if p<=2.  



Example: Test the convergence of the series: 

(i)
12

22
+
12.32

2242
𝑥 +
12.32.52

2242.62
𝑥2 +⋯ 

(ii) 𝑥 + 𝑥1+1\2 + 𝑥1+1\2+1\3 + 𝑥1+1\2+1\3+1\4 +⋯ 

Solution: Here 𝑎𝑛 =
12.32.…(2𝑛−1)2

2242….(2𝑛)2
𝑥𝑛−1 𝑎𝑛+1 =

12.32.…(2𝑛+1)2

2242….(2𝑛+2)2
𝑥𝑛 

lim
𝒏→∞

𝒂𝐧
𝒂𝐧+𝟏
= lim
𝒏→∞

2𝑛 + 2

2𝑛 + 1

𝟐
𝟏

𝒙
=
𝟏

𝒙
 

Therefore by D’Alembert’s Test the given series is convergent if 
𝟏

𝒙
> 𝟏  𝒊. 𝒆. 𝒙 < 𝟏 and 

divergent if 
𝟏

𝒙
< 𝟏  𝒊. 𝒆. 𝒙 > 𝟏  and the test fail if x=1 

Now when x=1 

𝒂𝐧
𝒂𝐧+𝟏
− 𝟏 =

𝟐𝒏 + 𝟐

𝟐𝒏 + 𝟏

𝟐

− 𝟏 

lim
𝒏→∞
𝒏
𝒂𝐧
𝒂𝐧+𝟏
− 𝟏 = lim

𝒏→∞
𝒏 ×
𝟒𝒏 + 𝟑

𝟐𝒏 + 𝟏 𝟐
= 𝟏 

Therefore Raabe’s test fail to describe nature of series, now applying DeMorgans and Bertrand 
test 

𝒏
𝒂𝐧
𝒂𝐧+𝟏
− 𝟏 − 𝟏 = 𝒏 ×

𝟒𝒏 + 𝟑

𝟐𝒏 + 𝟏 𝟐
− 1 

lim
𝒏→∞

𝒏
𝒂𝐧
𝒂𝐧+𝟏
− 𝟏 − 𝟏 log𝒏 = lim

𝒏→∞

−𝒏 − 𝟏

𝟐𝒏 + 𝟏 𝟐
log 𝒏 = lim

𝒏→∞

−𝟏 − 𝟏\n

𝟐 + 𝟏\n 𝟐
log 𝒏

𝒏
= 𝟎 < 𝟏 

Thus by D & B Test given series is divergent when x=1. hence finally series is convergent if 
x<1 and divergent if x>=1. 



Cauchy’s Condensation Test: 
If f(a) be a positive function of positive integral value of n and f(n) is a monotonically 
decreasing function of n ∀𝑛 ∈ 𝑁 then the two infinite series  𝑓(𝑛) and  𝑎𝑛𝑓(𝑎𝑛) 
converge or diverge together, here a being a positive integer greater than unity.  

OR 

If f(n) be a positive monotonically decreasing function of n  ∀𝑛 ∈ 𝑁, then the two series  

f(1)+f(2)+f(3)+  …..…+f(n)   and 𝑎𝑓 𝑎 + 𝑎2𝑓 𝑎2 + 𝑎3𝑓 𝑎3 +⋯+ 𝑎𝑛𝑓(𝑎𝑛) 

converge or diverge together, here a being a positive integer greater than unity. 

Remark:  
This test generally applied when 𝑎𝑛 contains log 𝑛. 

Theorem:   

The auxiliary series  
1

𝑛 log 𝑛 𝑝
 ∞

𝑛=1 is convergent if 𝑝 > 1 and divergent if 𝑝 ≤ 1. 

Proof: Case I    if 𝑝 ≤ 0 

Then 
1

𝑛 log 𝑛 𝑝
≥
1

𝑛
      for 𝑛 ≥ 2 

So by comparison test since 
1

𝑛
 is divergent so the series  

1

𝑛 log 𝑛 𝑝
 is also divergent. 

Case II   If 𝑝 > 0 the consider  

𝑓 𝑛 =
1

𝑛 log 𝑛 𝑝
 

 



Here f(n) is positive for all 𝑛 ≥ 2 and since 𝑛 log 𝑛 𝑝 is increasing sequence so 
1

𝑛 log 𝑛 𝑝
 

i.e. f(n) is decreasing sequence. Hence by Cauchy’s condensation test should apply. By 

CCT the series  𝑓 𝑛    is convergent or divergent according as    𝑎𝑛𝑓 𝑎𝑛   is 
convergent or divergent. 

Now    𝑎𝑛𝑓 𝑎𝑛 =
𝑎𝑛

𝑎𝑛(log 𝑎𝑛)𝑝
=

1

(𝑛 log 𝑎)𝑝
=
1

𝑛𝑝
1

(log 𝑎)𝑝
 

Since 
1

(log 𝑎)𝑝
 is constant so the series  𝑎𝑛𝑓 𝑎𝑛  is converges or diverges as  

1

𝑛𝑝
 is 

convergent or divergent. 

Since  
1

𝑛𝑝
 is convergent if p>1 and divergent if 𝑝 ≤ 1. hence by  CCT the given series 

 
1

𝑛 log 𝑛 𝑝
  is convergent if p>1 and diverges 𝑝 ≤ 1. 

Example: test the convergence of the series  

(i)  
(log 𝑛)2

𝑛2
 

Solution: The 𝑛𝑡ℎterm of the series 𝑎𝑛 = 𝑓 𝑛 =
(log 𝑛)2

𝑛2
 

Which is positive for   n≥ 2and monotonically decreasing as n increases. 

Now 𝑎𝑛𝑓 𝑎𝑛 = 𝑎𝑛
(log 𝑎𝑛)2

𝑎2𝑛
=
𝑛2(log 𝑎)2

𝑎𝑛
 

Where a being a positive integer greater than one .  

Consider  𝑎𝑛𝑓 𝑎𝑛 =  𝑎𝑛
(log 𝑎𝑛)2

𝑎2𝑛
=  𝑏𝑛(𝑠𝑎𝑦) 

 

 

 



𝑏𝑛 =
𝑛2(𝑙𝑜𝑔 𝑎)2

𝑎𝑛
              𝑏𝑛+1 =

(𝑛+1)2(𝑙𝑜𝑔 𝑎)2

𝑎𝑛+1
  

𝑙𝑖𝑚
𝑛→∞

𝑏𝑛
𝑏𝑛+1
= 𝑙𝑖𝑚
𝑛→∞

𝑎𝑛2

𝑛2(1 + 1\𝑛2)
= 𝑎 > 1 

So by D’Alemberts Ratio test the series  𝑏𝑛  𝑖. 𝑒.  𝑎
𝑛𝑓 𝑎𝑛   is convergent. 

Hence by CCT the series  
(𝑙𝑜𝑔 𝑛)2

𝑛2
 is convergent. 

Convergence Of Infinite Integrals:  

The infinite integrals  𝒇 𝒙 𝒅𝒙
∞

𝟏
 is said to be convergent (divergent) if 

𝐥𝐢𝐦
𝒕→∞
 𝒇 𝒙 𝒅𝒙
𝒕

𝟏
      𝒊𝒔 𝒇𝒊𝒏𝒊𝒕𝒆 𝒐𝒓 𝒊𝒏𝒇𝒊𝒏𝒊𝒕𝒆 . 

Definition: 
Let f(x) be real valued function with domain ,𝟏,∞) the function f(x) is said to be 
non negative if 𝒇 𝒙 ≥ 𝟎 ∀𝒙 ≥ 𝟏  and f(x) is said to be monotonically decreasing if 
𝒙 ≤ 𝒚 𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝒇 𝒙 ≥ 𝒇 𝒚    𝒙, 𝒚 ∈ 𝟏,∞ . 

Cauchy’s Integral Test: 
If f(x) is nonnegative monotonically decreasing and integrable function such that  
𝐟 𝐧 = 𝒂𝒏 ∀𝒏 ∈ 𝑵 

Then the series     𝒂𝒏
∞
𝒏=𝟏  is convergent and the integral  𝒇 𝒙 𝒅𝒙

∞

𝟏
 are either both 

convergent or both divergent.  

 

 



Example: Test the convergence of the series by using Cauchy’s integral test 

(i)  
1

𝑛(𝑛+1)
∞
𝑛=1  

(ii)   
1

𝑛 (log 𝑛)𝑝
 

Solution: Here 𝑓 𝑥 =
1

𝑥2+𝑥
  so that 𝑓 𝑛 = 𝑎𝑛 

For 𝑥 ≥ 1, 𝑓 𝑥  is nonnegative, decreasing and integrable function. Now  

 

 
𝑑𝑥

𝑥(𝑥+1)
=

𝑡

1
  
1

𝑥
−
1

𝑥+1
𝑑𝑥

𝑡

1
= log

𝑥

𝑥+11

𝑡
= log

𝑡

𝑡+1
− 𝑙𝑜𝑔2 

Therefore  lim
𝒕→∞
 
𝑑𝑥

𝑥(𝑥+1)
= 𝑙𝑜𝑔1 + 𝑙𝑜𝑔2 = 𝑙𝑜𝑔2    (𝑓𝑖𝑛𝑖𝑡𝑒)

𝑡

1
 

Hence the integral  
𝑑𝑥

𝑥(𝑥+1)
 

∞

1
is convergent and so by Cauchy’s integral test the given 

series  
1

𝑛(𝑛+1)
∞
𝑛=1  is also convergent. 

Alternating Series  

A series  of the form 𝑎1 − 𝑎2 +𝑎3 −𝑎4 +⋯+ −1
𝑛−1𝑎𝑛 +⋯  where 𝑎𝑛 > 0∀𝑛 ∈ 𝑁 

is called an alternating series and denoted by  

 −1 𝑛−1𝑎𝑛

∞

𝑛=1

 



Leibnitz Test: 

An alternating series  −𝟏 𝒏−𝟏𝒂𝒏 
∞
𝒏=𝟏 where 𝒂𝒏 > 𝟎∀𝒏 ∈ 𝑵  is convergent if 

(i) 𝒂𝒏+𝟏 ≤ 𝒂𝒏     ∀𝒏 ∈ 𝑵 

(ii) 𝐥𝐢𝐦
𝒏→∞
𝒂𝒏 = 𝟎 

Example: Test the convergence of the series  

(i) 1 −
1

2𝑝
+
1

3𝑝
−
1

4𝑝
+⋯ p > 0  

(ii)
𝑙𝑜𝑔2

22
−
𝑙𝑜𝑔3

32
+
𝑙𝑜𝑔4

42
−⋯ 

Solution: Here    𝑎𝑛 =
1

𝑛𝑝
               𝑎𝑛+1 =

1

(𝑛+1)𝑝
 

𝑎𝑛 − 𝑎𝑛+1 =
1

𝑛𝑝
−

1

  𝑛+1 𝑝
> 0       ,  𝑝 > 0        

𝑎𝑛 − 𝑎𝑛+1 > 0             𝑎𝑛 > 𝑎𝑛+1            ∀𝑛 

And   𝑙𝑖𝑚
𝑛→∞
𝑎𝑛 = 𝑙𝑖𝑚

𝑛→∞

1

𝑛𝑝
= 0              𝑠𝑖𝑛𝑐𝑒 𝑝 > 0  

Hence by Leibnitz test the given series is convergent. 

(ii) Here 𝑎𝑛 =
log (𝑛+1)

(𝑛+1)2
            ∀𝒏 ∈ 𝑵 

𝑙𝑖𝑚
𝑛→∞
𝑎𝑛 = 𝑙𝑖𝑚

𝑛→∞

log (𝑛+1)

(𝑛+1)2
= 0                           [since 𝑙𝑖𝑚

𝑛→∞

log 𝑛

𝑛2
= 0 ] 

Next to show that 𝒂𝒏+𝟏 ≤ 𝒂𝒏     ∀𝒏 ∈ 𝑵 

 

 

 

 



Let 𝑓 𝑥 =
𝑙𝑜𝑔𝑥

𝑥2
                𝑓′ 𝑥 =

𝑥21\𝑥−2𝑥𝑙𝑜𝑔𝑥

𝑥4
< 0      ∀ 𝑥 > 𝑒1\2 

(Since 𝑥 > 𝑒1\2 ↔ 𝑙𝑜𝑔𝑥 > 1\2 ↔ 1 − 2𝑙𝑜𝑔𝑥 < 0) 
Which implies that f(x) is decreasing function ∀ 𝑥 > 𝑒1\2 

Thus f(n+2) ≤f(n+1)      ∀𝒏 ∈ 𝑵         𝒏 + 𝟐 > 𝒏 + 𝟏 > 𝑒1\2  

        
log (𝑛+2)

(𝑛+2)2
≤
log (𝑛+1)

(𝑛+1)2
        ∀𝒏 ∈ 𝑵   

This shows that 𝒂𝒏+𝟏 ≤ 𝒂𝒏     ∀𝒏 ∈ 𝑵 
Hence by Leibnitz’s test the given series is convergent. 
Absolute convergence: 

A series  𝒂𝒏  𝐢𝐬 𝐬𝐚𝐢𝐝 𝐭𝐨 be absolutely convergent if the series  
 𝒂𝒏   𝐢𝐬 𝐜𝐨𝐧𝐯𝐞𝐫𝐠𝐞𝐧𝐭. 
 
Example: Consider a series  𝒂𝒏 = 𝟏 − 𝟏\𝟐 + 𝟏\𝟐𝟐 − 𝟏\𝟐𝟑 +⋯   which is 
absolutely convergent 
Since  𝒂𝒏  = 𝟏 + 𝟏\𝟐 + 𝟏\𝟐

𝟐 + 𝟏\𝟐𝟑 +⋯ 
Which is geometric series with common ratio r=1\2<1 then the series   𝒂𝒏  is 
convergent. Hence  𝒂𝒏  is absolutely convergent. 
Note: The given series is also convergent 

 𝒂𝒏 = 𝟏 − 𝟏\𝟐 + 𝟏\𝟐
𝟐 − 𝟏\𝟐𝟑 +⋯ 

Clearly  𝒂𝒏+𝟏 ≤ 𝒂𝒏     ∀𝒏 ∈ 𝑵 

 𝑙𝑖𝑚
𝑛→∞
𝑎𝑛 = 𝑙𝑖𝑚

𝑛→∞

1

2𝑛
= 0 

So by Leibnitz’s test the given series is convergent. 
 
 
 
   



Remark: Every absolutely convergent series is always convergent but converse need not 
be true. 

Example: consider a series  

  𝑎𝑛 = 1 − 1\2 + 1\3 − 1\4 +⋯ 

Clearly 𝑎𝑛+1 < 𝑎𝑛     ∀𝑛 ∈ 𝑁 

And lim
𝑛→∞
𝑎𝑛 = lim

𝑛→∞
1\𝑛 = 0   

So by Leibnitz’s test the given series is convergent. 

But   𝑎𝑛  = 1 + 1\2 + 1\3 + 1\4 + ⋯ =  
1

𝑛
, which is divergent  

Hence  𝑎𝑛 is not absolutely convergent. 

Conditional Convergence:  
A series  𝑎𝑛 is said to be conditionally convergent, if 

(i)  𝑎𝑛 is convergent. 

(ii)  𝑎𝑛 is not absolutely convergent. 

Example  𝑎𝑛 = 1 − 1\2 + 1\3 − 1\4 +⋯  is conditionally convergent. 

Since  𝑎𝑛 is convergent, but  𝑎𝑛  is not convergent. 

 

 

 

 

 



Summery of tests: 
Let us take a series  𝑎𝑛  of positive term, now to check the convergence of series we proceed 
as follows: 

1. First find  𝑙𝑖𝑚
𝑛→∞
𝑎𝑛.   

i. If   𝑙𝑖𝑚
𝑛→∞
𝑎𝑛 ≠ 0  then series is divergent. 

ii. If 𝑙𝑖𝑚
𝑛→∞
𝑎𝑛 = 0 then series may or may not be convergent. 

2. In this case we apply comparison test if 𝑎𝑛 is algebraic function in n 

First comparison Test                   Limit for Comparison Test 

3.    If in 𝑎𝑛, n as an exponent form then Cauchy’s nth root test applied . 

4. If above test fail and 𝑎𝑛 contains the term of logn then Cauchy’s Condensation tesr must 
be applied. 

5. Next to find the nature of series D’Alembert’s Ratio Test should be applied. 

6. If this test fails then apply Raabe’s test. 

7. Again if Raabe’s test fails  for  l=1, then immediately DeMorgan’s and Bertrand test must 
be applied. 

8. If 
𝑎𝑛

𝑎𝑛+1
− 1 cannot be easily calculated then evaluate  log

𝑎𝑛

𝑎𝑛+1
 , and apply Logarithmic test 

and after failure if this test we always use Higher Logarithmic Test. 

 

    

       


