
Divide-and-Conquer: Matrix Multiplication  Strassen’s Algorithm

Matrix Multiplication Problem
Matrix Multiplication. Given two matrices:

Step 1: Straightforward Solution.
Algorithm MatrixMultiply solves the Matrix Multiplication problem in a 
straightforward manner.

Algorithm

             Return matrix C

    

MatrixMultiply(n,k,m,A[1..n][1..k], B[1..k][1..m])
begin
   C[1..n][1..m]; // define the result matrix
   for i = 1 to n do
 for j = 1 to m do
  c =  0;

for s = 1 to k do
c  = c + A[i][s] _ B[s][j];

end for
C[i][j] =  c;

end for
 end for
return(C);
end



Analysis 
Correctness is straightforward: the algorithm implements faith-fully the definition 
of the matrix multiplication. 
Runtime. Let us assume that n =(N), m =  (N) and k =  (N). Let us estimate 
the runtime complexity of Algorithm MatrixMultiply by counting the most 
expensive operations in the algorithm: the multiplications. 
The c =  c+A[i][s]*B[s][j] assignment statement will be executed exactly n · m · k 
times. With the assumptions about, we obtain our bound on the runtime of the 
algorithm: T(N) =  (N3).

A Divide-And-Conquer Algorithm for Matrix Multiplication

Note: For the sake of simplicity (but without loss of generality) assume
that we are multiplying to square n × n matrices A and B, i.e., m = n and
k = n.
Key Observation:               Matrix Multiplication can be performed blockwise.

Here XP, Y R, XQ, Y S, ZP, WR, ZQ and WS are products of the respective 
matrices X, Y , Z, W, P, Q, R, S and the + operator is the element-by-element 
matrix addition.
Using this observation, we can devise a divide-and-conquer algorithm for 
multiplying matrices



Algorithm

Analysis
Consider the running time of the Algorithm MatrixSum. The assignment operation 
in that algorithm is performed n2 times, so, the running time of the algorithm is 
O(n2) ((n2), in fact).
 Now, we can devise the recurrence relation to represent the running time
of Algorithm MMDC. Algorithm MMDC reduces solving problem of multiplying 
of two n × n   matrices to eight problems of multiplying n/2  x  n/2 matrices, and 
computing four O(n2) matrix sums. Therefore, the recurrence relation for 
Algorithm MMDC is: 

T(n) = 8T(n/2) +  O(n2)

To solve this recurrence relation, observe that in terms of the Master Theorem a = 
8, b = 2 and logb(a) = 3 and f(n) = O(n2) = o(nloga(b)−€) = o(n3−0.2 for € = 0.2. 
Therefore, by the Master Theorem,

T(n) = O(n3)
This does not improve upon the straightforward algorithm, but as we saw before 
with finding second largest number problem, this gives us a set up to devise a 
better algorithm that would not be possible without Divide-and- Conquer.

Strassen’s Algorithm

In 1969, Volker Strassen, a German mathematician, observed that we can eliminate
one matrix multiplication operation from each round of the divide- and-conquer 
algorithm for matrix multiplication.
Consider again two n × n matrices

Algorithm MatrixSum(n, A[1..n][1..n], B[1..n][1..n])
begin

C[1..n][1..n];
for i = 1 to n do

for j = 1 to n do
C[i][j] =   A[i][j] + B[i][j];

end for;
end for;
return(C);

end



We recall

Strassen’s Algorithm is based on observing that XP + Y R, XQ + Y S,
ZP + WR and ZQ + WS can be computed with only seven (instead of eight as in 
Algorithm MMDC) matrix multiplication operations, as follows.

First, compute the following seven matrices:

                 
Note: Computing each of the P1, . . . , P7 matrices requires one matrix 
multiplication operation per matrix.

Second: observe the following equalities:



Analysis
We  note  that  a  direct  implementation  of  Strassen’s  Algorithm  involves  seven
recursive  calls  to  multiplication  problems  of  size  n/2×n/2  ,  but also  involves
significantly  more  calls  to  MatrixSum  algorithm  that  runs  in  quadratic  time.
Nevertheless,  the  f(n)  function in terms of  the Master  Theorem remains  f(n)  =
O(n2), while the entire recurrence relation becomes

T(n) = 7T(n/2) + O(n2)

By Master Theorem, because n2 = o(n log
2
 7−€), the running time of the

Strassen’s Algorithm is 

T(n) = O(nlog
2
 7) = O(n 2.81)

Note.  This is  not  a tight  upper bound on the algorithmic complexity of  matrix
multiplication. The current best algorithmic bound is  O(n  2.3728). This algorithm,
however,  and  other  algorithms  similar  to  it  have  a  very  large  multiplicative
constant associated with the computation, that it is not practical to use.


