Divide-and-Conquer: Matrix Multiplication Strassen’s Algorithm

Matrix Multiplication Problem
Matrix Multiplication. Given two matrices:

ayy a2 ... At bir bz ... bim
asy a9y ... 9 bay boo ... ban,
pl Ap2 ... dpk E’L‘l 'IJ'L'Q “e 'Fj.']'m

Return matrix C

©11 12 N S
. a1 0220 ... O2m
c=1. : o 3
- - i § :”w dipy.
Cnl Cpr2 .- Cam =

Step 1: Straightforward Solution.
Algorithm MatrixMultiply solves the Matrix Multiplication problem in a
straightforward manner.

Algorithm

MatrixMultiply(n,k,m,A[1..n][1..k], B[1..k][1..m])
begin
C[1..n][1..m]; // define the result matrix
fori=1tondo
forj=1tomdo
c= 0;
fors=1to kdo
¢ =c+A[]ls] _B[s]il;

end for
ChHInI = ¢
end for
end for
return(C);

end

Analysis

Correctness is straightforward: the algorithm implements faith-fully the definition
of the matrix multiplication.

Runtime. Let us assume that n =Q(N), m = ©® (N) and k = © (N). Let us estimate
the runtime complexity of Algorithm MatrixMultiply by counting the most
expensive operations in the algorithm: the multiplications.

The ¢ = ct+A[i][s]*B][s][j] assignment statement will be executed exactly n - m - k
times. With the assumptions about, we obtain our bound on the runtime of the
algorithm: T(N) = © (N°).

A Divide-And-Conquer Algorithm for Matrix Multiplication

Note: For the sake of simplicity (but without loss of generality) assume

that we are multiplying to square n x n matrices A and B, i.e., m = n and
k =n.

Key Observation: Matrix Multiplication can be performed blockwise.
Let
X Y P @
A= - |, B = L
(z w)e=(z %)
A1) e apz A12+1 - aln
where X = | ol Y= ol . and so on
azy ... azz AZZi) aAZn

Then, in fact,

‘J' 4 Jr)—15-
A-B:(YP+YR XQ+1Y)

ZP+WR ZQ+WS

Here XP, Y R, XQ, Y S, ZP, WR, ZQ and WS are products of the respective
matrices X, Y ,Z, W, P, Q, R, S and the + operator is the element-by-element
matrix addition.

Using this observation, we can devise a divide-and-conquer algorithm for
multiplying matrices

Algorithm

Algorithm MatrixSum(n, A[1..n][1..n], B[1..n][1..n])
begin
C[1.n][1.n];
fori=1tondo
forj=1tondo
Clilli] = AliG] + Bllil;
end for;
end for;
return(C);

end

Analysis
Consider the running time of the Algorithm MatrixSum. The assignment operation
in that algorithm 1s performed n2 times, so, the running time of the algorithm 1s
O(n2) (©(n2), in fact).
Now, we can devise the recurrence relation to represent the running time
of Algorithm MMDC. Algorithm MMDC reduces solving problem of multiplying
of two n x n matrices to eight problems of multiplying n/2 x n/2 matrices, and
computing four O(n*) matrix sums. Therefore, the recurrence relation for
Algorithm MMDC is:

T(n) = 8T(n/2) + O(n?)

To solve this recurrence relation, observe that in terms of the Master Theorem a =
8, b =2 and logy(a) = 3 and f(n) = O(n?) = o(n"*#*® ® = o(n* 2 for €= 0.2.
Therefore, by the Master Theorem,

T(n) = O(n’)
This does not improve upon the straightforward algorithm, but as we saw before
with finding second largest number problem, this gives us a set up to devise a
better algorithm that would not be possible without Divide-and- Conquer.

Strassen’s Algorithm

In 1969, Volker Strassen, a German mathematician, observed that we can eliminate
one matrix multiplication operation from each round of the divide- and-conquer
algorithm for matrix multiplication.

Consider again two n X n matrices

/XY (P Q
"1_(2 I‘[')‘B_(RS)

We recall

g XP+YR XQ+YS
AEE\ ZP+WR ZQ+ WS

Strassen’s Algorithm is based on observing that XP + Y R, XQ + Y S,
ZP + WR and ZQ + WS can be computed with only seven (instead of eight as in
Algorithm MMDC) matrix multiplication operations, as follows.

First, compute the following seven matrices:

P=X(Q-S5)
PB=(X+Y)S
Py=(Z+W)P
Py=W(R-DP)

Po=(X +W)(P+8S)
Fo=(Y —WJR+5)

Note: Computing each of the P1, . . ., P7 matrices requires one matrix
multiplication operation per matrix.

Second: observe the following equalities:

Pot-Py—FPo+ Py = (X+W)P+S)+W(R-P)—(X+Y)54+ (Y -W)(R+S5) =

XP+XS54+WP+WS+WR-WP-XS-YS5+YR-WER4+YS-WS=XP+ YR

P+ =XQ-5+X+Y)5§5=XQ-X54+X5+YS5=X5+YS

Ps+Py=(Z+W) P+W(R-P)=ZP+WP+WR-WP=ZP + WR

P +P;—FP—P, = X(Q-S)+(X4+W)(P+S)—(Z+W P (X-Z)(P4+Q) =
XQ-XS+XP4+XSH+WPHWS—ZP-WP-XP+ZP-XQ+ZQ =7ZQ + WS

That is.

1.8 = Ps+ Py — P+ Py P+ P
) o P; + Py P+ P —FP—F;

Analysis
We note that a direct implementation of Strassen’s Algorithm involves seven
recursive calls to multiplication problems of size n/2xn/2 , but also involves
significantly more calls to MatrixSum algorithm that runs in quadratic time.
Nevertheless, the f(n) function in terms of the Master Theorem remains f(n) =
O(n?), while the entire recurrence relation becomes

T(n) = 7T(n/2) + O(n2)

By Master Theorem, because n? = o(n %, 7€), the running time of the
Strassen’s Algorithm is

T(l’l) — ()(nlog2 7) — O(l’l 2.81)
Note. This is not a tight upper bound on the algorithmic complexity of matrix
multiplication. The current best algorithmic bound is O(n **"*). This algorithm,
however, and other algorithms similar to it have a very large multiplicative
constant associated with the computation, that it is not practical to use.

