
If, else-if, switch-case
conditional statements

if (condition) {
 statement(s); }
else if (condition) {
 statement(s); }
else {
 statement(s); }

if (TRUE) {
 /* Execute these stmts if
 TRUE */ }
else {
 /* Execute these stmts if
 FALSE */ }

switch (<variable>) {
 case this-value: /* Note the :, not a ; */
 Code to execute if <variable> == this-value;
 break;
 case that-value:
 Code to execute if <variable> == that-value;
 break;
... default:
 Code to execute if <variable> does not equal
 the value following any of the cases break; }

SWITCH NOTES:
Notice, no {} blocks within each case.
Notice the colon for each case and value.
The “condition” of a switch statement is a value.
The default case is optional, but it is wise to
include it as it handles any unexpected cases.
Chooses first match…

ElseIF example

#include <stdio.h>
int main() {
 int age; /* Need a variable... */
 printf("Please enter your age"); /* Asks for age */
 scanf("%d", &age); /* The input is put in age */
 if (age < 100) { /* If the age is less than 100 */
 printf ("You are pretty young!\n"); } /* Just to show you it works... */
 else if (age == 100) { /* use else to show an example */
 printf("You are old\n"); } /* how rude! */
 else {
 printf("You are really old\n"); } /* do this if no other block exec */
 return 0;
}

NOTE: You do not have to use {} if only one statement in the block. None of the
above brackets in the IF structure are necessary! Check out where the semi-colon
goes (and where it doesn’t).

Switch example

switch (x) {
case 'a':
 /* Do stuff when x is 'a' */
 break;
case 'b':
case 'c':
case 'd':
 /* Fallthrough technique...
 cases b,c,d all use this code */
 break;
default:
 /* Handle cases when x is not
 a,b,c or d. ALWAYS have a
 default case*/
 break; }

#include <stdio.h>
void playgame() { printf("Play game called"); }
void loadgame() { printf("Load game called"); }
void playmultiplayer() { printf("Play multiplayer game called"
); }
int main() {

int input;
printf("1. Play game\n");
printf("2. Load game\n");
printf("3. Play multiplayer\n");
printf("4. Exit\n");
printf("Selection: ");
scanf("%d", &input);
switch (input) {
 case 1:
 playgame();
 break;
 case 2:
 loadgame();
 break;
 case 3:
 playmultiplayer();
 break;
 case 4:
 printf("Thanks for playing!\n");
 break;
 default:
 printf("Bad input, quitting!\n");
 break; }
getchar();
return 0; }

What is GDB?

GDB: The GNU Project Debugger
Allows you to see what is going on “inside” another program
while it executes -- or what another program was doing at
the moment it crashed.
GDB can do four main kinds of things (plus other things in
support of these) to help you catch bugs in the act*:

Start your program, specifying anything that might affect its
behavior.
Make your program stop on specified conditions.
Examine what has happened, when your program has stopped.
Change things in your program, so you can experiment with
correcting the effects of one bug and go on to learn about
another.

* or just for fun to see what is going on behind the scenes :o)

Using GDB

%nl gdbincl.c > gdbinclnl
gdbtestnl is a text file so no extension necessary
Use an editor to open gdbinclnl
Now can reference line numbers

%more gdbincl.c
Shows your program on the screen

COMMANDS
 http://www.yolinux.com/TUTORIALS/GDB-Commands.html

help – lists gdb command topics
info xxx – where xxx be to list the breakpoints,
breakpoint numbers, registers, etc
run – starts execution
quit – short cut is just q

http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.yolinux.com/TUTORIALS/GDB-Commands.html

GDB command (cont)

Break and watch commands
break/tbreak followed by:
 Function name, line number
clear – delete breakpoints
watch – followed by a condition
 Suspends processing when condition is met
delete – delete all break/watch points
continue – exec until next break/watch point
finish – continue to end of function

Line execution commands

step – step to next line of code (will step into a function)
next – execute next line of code (will not enter functions)
until - Continue processing until you reacha a specified
line number

