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INTRODUCTION 

Psychometry is the branch of psychology which deals with the 

measurement of psychological traits or mental abilities like intelligence, 

aptitude, interest, opinion, attitude or, simply scholastic achievement. 

Education statistics may be considered to be a part of psychiatry where our 

main purpose is to rank a group of individuals according to their scholastic 

achievement. Although this task of ranking does not seem to present 

immediate problems, a close examination will reveal a number of pitfalls and 

weaknesses of the prevalent system.  

Unlike physical or biological characteristics, psychological 

characteristics are rather abstract and hence can be measured only with some 

degree of unreliability. For the purpose of measurement, one has to develop a 

certain scale, which bears a strong analogy with a foot-rule used for 

measuring or comparing lengths. As on a foot–rule equal distances on a 

psychological scale stand for empirically equal differences n the psychological 

trait being measured. But the zero–point of the psychological scale, unlike that 

of the foot-rule, is arbitrary. However, distances from the arbitrary zero are 

additive. In other words a psychological scale is an interval scale and not a 

ratio scale, since there is no absolute zero-point on it. 

 

SOME SCALING PROCEDURES 



Most of the scaling procedures used for psychological or educational 

data are based on the assumption that the trait under consideration is 

normally distributed. The zero-point and the units of the scale are chosen 

arbitrarily, but the scale unit should be equal and remain stable throughout 

the scale. We shall discuss in this section some of the common scaling 

procedures used in psychology and education. 

SCALING INDIVIDUAL TEST-ITEMS OF DIFFICULTY 

Here we have a number of items in a test administered to a large group 

of individuals. The proportion of individuals successful in each item is known. 

We assume in the construction of the difficulty scale that the ability (x) which 

the group of items is measuring is normally distributed with some mean μ and 

some s.d σ. We can arbitrarily take the origin at μ write μ=0.  

Let pi be the proportion of individuals passing the 𝑖𝑡ℎ item. We 

determine the point x-axis for which the area to the right of the ordinate is pi . 

Let the point be 𝑘𝑖σ . Thus 𝑘𝑖σ  is the amount of ability required for passing 

the item and hence may be taken as a measure of difficulty (𝑑𝑖) for the 𝑖𝑡ℎ  

item. Thus an equal difference in 𝑑 will mean an equal difference in ability 

required for passing the items. 

  



 
                          ABILITY   

                Fig. Determining the difficulty-value of an item from 
                the proportion of individuals passing the item 

 Example: Suppose there are four item A,B,C and D, passed, respectively, by 

90%, 80%, 70% and 60% of the individuals. Compare the difference in 

difficulty between A and B with the difference in difficulty between C and D.  

 To find the difficulty value 𝑑𝐴 of the item A we find the point, on the 

normal distribution with mean O, and s.d. σ, the area to the right of which is 

0.90. From the table of the area under the normal probability curve (Table I, 

Appendix B), we have  

                                                           𝑑𝐴 = −1.28σ 

Similarly                                          𝑑𝐵 = −0.84𝜎    

                                                           𝑑𝐶 = −0.52𝜎                

And                                                   𝑑𝐷 = −0.25𝜎 

Hence                                      𝑑𝐵 − 𝑑𝐴 = 0.44𝜎,     whereas   𝑑𝐷 − 𝑑𝐶 = 0.27𝜎 

P1 

Probability 

Density 



Thus                                             
𝑑𝐵−𝑑𝐴

𝑑𝐷−𝑑𝐶
=
0.44𝜎

0.27𝜎
= 1.63. 

The difficulty of B relative to A is 1.63 times greater than the difficulty of 

D relative to C. 

 

SCALING OF TEST-SCORES IN SEVERAL TESTS 

The main defect of the prevalent system of ranking in scholastic test 

consists in the adding of the raw scores of an individual on several tests to get 

his composite or total scores and ranking all individuals on the basis of the 

total scores. This is not a valid procedure since the same raw score 𝑥 on 

different tests may involve different degrees of ability and hence may not be 

equivalent in different tests. Hence the raw scores have to be scaled under 

some assumption regarding the distribution of the trait which the test is 

measuring. 

 

 

Percentile scaling  

Here we assume that the distribution of the trait under consideration is 

rectangular, under which we shall have percentile differences equal 

throughout the scale. To determine the scale value corresponding to a score 𝑥 

we have to find the percentile position of an individual with score 𝑥, 𝑖. 𝑒 the 

percentage of individuals in the group having a score equal to or less than 𝑥, 

which can be easily obtained from the score-distribution assuming that ‘score’ 

is a continuous variable .Regardless of the form of the original raw scores 

distribution, the distribution of percentile score will be rectangular. However, 

the distribution of raw scores is rarely rectangular, so that the basic 

assumption underlying the percentile scaling may not always be realistic. 

Thus while using this scaling method one should beware of its limitations. 

Z-Scaling or 𝝈 scaling  



Here we assume that whatever differences that may exist in the forms of 

raw score distributions may be attributed to chance or to the limitations of the 

test. In fact, the distributions of the traits under consideration are assumed to 

differ only in mean and s.d. Hence the score on different tests should be 

expressed in items of the score in a hypothetical distribution of the same form 

as the trait–distribution with some arbitrarily chosen mean and s.d. The 

transformed scores are called linear derived scores. In particular, if the mean is 

arbitrarily taken to be zero and the s.d to be unity, the scores are called 

standard scores or 𝜎-scores or z–score. To avoid negative standard scores, in 

linear derived scores the mean is generally taken to be 50 and the s.d to be 10. 

If a particular test has raw score mean & s.d equal to μ & σ, respectively, then 

the linear derived score corresponding to a score 𝑥 on that test is given by 

𝑥 − 𝜇

𝜎
=
𝑤 − 50

10
 

or                                                                𝑤 = 50 + 10𝑋
(𝑥−𝜇)

𝜎
  = 50 + 10𝑧,        …(1) 

where 𝑤 is the linear derived score with mean 50 and s.d. 10 and 𝑧 is the 

standard score. This linear transformation changes only the mean and the s.d., 

while retaining the form of the original distribution. 

T-Scaling  

In this case we assume that the trait-distribution is normal. The raw 

score distribution may deviate from normality, but the deviations from 

normality are attributed to chance or to limitations of the tests. The mean and 

s.d. of the normal distribution of the trait may be arbitrarily taken to be 50 

and 10, respectively. To get the scaled score corresponding to a raw score 𝑥, 

first we find as in percentile scaling, the percentile position (𝑃) of an 

individual with score 𝑥 and then find the point (𝑇) on a normal distribution 

with mean 50 and s.d. 10 below which the area is P/100. This is given by. 

                                                          𝛷 (
𝑇−50

10
) =

𝑃

100
                                               …(2)                                              

Where 𝛷(г) is the area under the curve of the normal deviate from -∞ to г. 



The scaled score obtained by the process is called T–score in memory of 

the psychologists Terman and Thorndyke. The scale is due to McCall. 

Normalized scores are also expressed as stanine (standard nine) score. 

The stanine scale takes nine values from 1 to 9, with mean 5 and s.d 2. When a 

distribution is transformed to a stanine scale, the frequencies are distributed 

as follows: 

                                                                   TABLE 5.1 

                                                        STANINE DISTRIBUTION  

A transformation is nonlinear if it changes the form of the distribution. 

Normalized score and percentile score are merely special case of nonlinear 

transformation of the raw score. For nonlinear transformation any form of 

distribution may be chosen. 

 

Method of equivalent scores  

Here we do not make any assumption about the distribution of the trait 

under consideration. The appropriate trait distribution is obtained by 

graduating the raw score distribution by an appropriate Pearsonian curve. 

Let 𝑥 and 𝑦 be the scores on two tests, having probability–density 

function 𝑓(𝑥) and ℎ(𝑦), respectively, obtained by some process of graduation. 

Now, two score on the two tests 𝑥𝑖  and 𝑦𝑖  are to be considered equivalent, in 

the score that they bring into play equal amounts of the trait, if and only if 

                                   ∫ 𝑓(𝑥)𝑑𝑥 = ∫ ℎ(𝑦)𝑑𝑦.
𝑦𝑖
−∞

𝑥𝑖
−∞

                                               …(3) 

Stanine score 1 2 3 4 5 6 7 8 9 

Percentage  on 
each 
score (rounded) 

4 7 12 17 20 17 12 7 4 



For Practical convenience an equivalence curve may be obtained by 

computing a number of pairs of equivalent score, (𝑥𝑖𝑦𝑖) and fitting to the 

corresponding set of points an appropriate curve, say 𝑦 = 𝑔(𝑥). 

Equivalent score can also be obtained from the score distribution for 𝑥 

and 𝑦 without going into the process of graduation .First two ogives are drawn 

on the some graph paper. Two scores 𝑥𝑖  and 𝑦𝑖  with the same relative 

cumulative frequency are then regarded are equivalent. 

For the purpose of comparison or combination, the raw score on 

different tests may be converted into equivalent scores on a standard test. In 

This method the form of the distribution of equivalent (transformed) scores is 

the same as that of the standard test. If however, the standard test score has a 

normal distribution, the method reduces to normalized scaling. 

Example:  The raw score distribution for Vernacular and English for a group 

of 500 students are given below. One of two students got 80 in Vernacular and 

40 in English, while the other got 60 in both. Compare their performances by 

(i) percentile scaling, (ii) linear derived scores, (iii) T-scaling and (iv) 

equivalent score (ogive method).  

First we have to remember that a score of 80 is to be considered as an 

interval from 79.5 to 80.5, and similarly for the other scores. To obtain the 

percentile positions, we obtain the cumulative frequencies (less-then type) for 

both Vernacular and English. They are shown in Table. Hence the percentile 

positions, corresponding to 80.5 and 60.5 in vernacular are given by 

                                               𝑃80.5(𝑉𝑒𝑟𝑛) =
497+0.6

500
 X 100 = 99.52  

And                                       𝑃60.5(𝑉𝑒𝑟𝑛) =
436+7.2

500
 X 100 = 88.64 

Similarly, for English      𝑃40.5(𝐸𝑛𝑔. ) =
270+15.6

500
 X 100 = 57.12 

and                                       𝑃60.5(𝐸𝑛𝑔. ) =
476+3.6

500
 X 100 = 95.92.                                         

TABLE: DISTRIBUTIONS OF SCOBES IN VERNACULAR AND ENGLISH OF A GROUP OF 500 STUDENTS 



TABLE: CUMULATIVE FREQUENCY DISTBIBUTIONS OF SCORES IN VERNACULAR AND ENGLISH 

Score                                    Frequency  

 Vernacular  English 
0-4  3 

5-9  6 

10-14  12 

15-19 6 23 

20-24 7 35 

25-29 18 45 

30-34 34 74 

35-39 56 72 

40-44 84 78 

45-49 74 53 

50-54 104 46 

55-59 53 29 

60-64 36 18 

65-69 16 5 

70-74 9 1 

75-79 0  

80-84 3  

   

Score                      Cumulative  Frequency 

Vernacular English 

0-4  3 
5-9  9 
10-14  21 
15-19 6 44 
20-24 13 79 
25-29 31 124 
30-34 65 198 
35-39 121 270 



             Hence the total scaled score for student 1, getting 80 in Vernacular and 

40 in English, is by percentile scaling,  

                                                99.52+57.12= 156.64 

And that of student 2, getting 60 in both Vernacular and English, is 

                                         88.64 +95.92=156.64 

Thus we see that the relative performances of the two students are 

quite different although their total raw scores are equal.  

For linear derived scores with mean 50 and s.d. 10, we require the 

means and s. d.s of scores in the two subjects. Denoting by 𝑥 the score in 

Vernacular and by 𝑦 the score in English, we have. 

                                                       𝑥̅ =47.07                      𝑠𝑥 = 11.32 

                                                       𝑦̅ =37.87        And       𝑠𝑦 = 13.10    

Hence the 𝑤 scores are given by  

𝑤80(𝑉𝑒𝑟𝑛) = 50 +
80 − 47.09

11.32
𝑋10 = 79.07, 

𝑤80(𝑉𝑒𝑟𝑛) = 50
60 − 47.09

11.32
𝑋10 = 61.40, 

𝑤80(𝐸𝑛𝑔) = 50 +
40 − 7.87

13.10
𝑋10 = 51.63 

40-44 205 348 
45-49 279 401 
50-54 383 447 
55-59 436 476 
60-64 472 494 
65-69 
70-74 

488 
497 

499 
500 

75-79 497  
80-84 500  
   



and                            𝑤80(𝐸𝑛𝑔) = 50 +
60−37.87

13.10
𝑋10 = 66.89. 

As such, the total 𝑤 −score of student 1 is 

                                                     79.07+51.63=130.70, 

and the of student 2 is 

                                                    61.40+66.89 =130.70, 

Linear derived scores however show that student I is slightly superior 

to student 2. 

Now, for T-scaling percentile positions have to be converted into T-

score. We have 

𝑇80(𝑉𝑒𝑟𝑛) = 50 + 𝑟.9952𝑋10 = 75.90, 

  𝑇60(𝑉𝑒𝑟𝑛) = 50 + 𝑟.8864𝑋10 = 62.08 

𝑇40(𝑉𝑒𝑟𝑛) = 50 + 𝑟.5712𝑋10 = 51.79 

and                                 𝑇60(𝑉𝑒𝑟𝑛) = 50 + 𝑟.9592𝑋10 = 67.41 

Hence the total T-score of student 1 is 

                                                        75.90+51.79=127.69  

and the total T-score of student 2 is 

                                                         62.08+67.41=129.49 

 Thus T-scaling shown that student 2 is slightly superior to student 1 

         

       OGIVE FOR MARKS IN ENGLISH(Y) 
    

              OGIVE FOR MARKS 
      IN VERNACULAR(X) 

         



520  

440  

360 

280 

200 

120 

40 
              4.5          14.5         24.5          34.5         44.5        54.5           64.5         74.5         84.5 
      MARKS  
 

Fig. Determination of equivalent scores in English 
and Vernacular from the ogives 

 
In the equivalent score method, let us take Vernacular as the standard. 

From figure we find that a score of a 40 in English is equivalent to a score of 

49.8 in Vernacular and a score of 60 in English is equivalent to a score of 66.9 

in Vernacular. 

Hence the total score of student 1 in terms of Vernacular score is 

                                             80+49.8=129.8 

And that student 2 is 

                                             60+66.9=126.9 

          This method again shows that student 1 is slightly superior to student 2.  

 

SCALING OF RATING OR RANKING TO TERM OF NORMAL CURVE 
In many psychological problems, individuals are rated or ranked by 

judges for their possession of some characteristics not readily measurable in 

terms of performance. Honestly responsibility tactfulness etc, are examples of 

such traits. Suppose that there are two judges rating a group of individuals 

         

         

         



and that the frequency distributions of ratings for the two judges are known. 

The problem is to assign ‘weights’ or numerical scores to the ratings, so that 

the ratings of the judges may be compared or combined. 

Let us assume that the distribution of the trait (𝑠𝑎𝑦 𝑥) is normal with 

mean 0 and s.d. 1. Now suppose that the individuals with trait values from 𝑥1 

to 𝑥2 are given a particular rating. The scale value for the rating is taken to be 

the mean trait value of all these individuals and so is given by the formula: 

∫ 𝑥
𝑥2

𝑥1

1

√2𝜋
= exp [−𝑥2/2]𝑑𝑥 

                   Scale value = 

∫ 𝑥
𝑥2

𝑥1

1

√2𝜋
= exp [−𝑥2/2]𝑑𝑥 

 

=

[−
1

√2𝜋
exp [−

𝑥2

2 ]
𝑥2
𝑥1

𝛷(𝑥2) − 𝛷(𝑥1)
=
𝛷(𝑥1) − 𝛷(𝑥2)

𝛷(𝑥2) − 𝛷(𝑥1)
 

                   …(4) 

where 𝜙(𝑥) =
1

√2𝜋
exp [−𝑥2/2]  and  𝛷(𝑥) = ∫ 𝑒𝑥𝑝 [−𝜇2/2]

𝑥

−∞
𝑑𝜇. 

From the observed distribution of the ratings, it is easy to find 𝛷(𝑥1) 

and 𝛷(𝑥2), and hence 𝜙(𝑥1) and 𝜙(𝑥2),  

The method is due to Likert and the scale is known as Likert’s scale. This 

is also called the category–scale method. If on the other hand the 𝑛 individuals 

in the group are ranked by different judges, the scale values corresponding to 

the ranks can be obtained under the sane assumptions as before, 𝑖. 𝑒 under the 

assumption of normality of the trait concerned. 

Suppose there is no tie. Then percentile rank (PR) of an individual with 

rank R, 𝑖. 𝑒 percentage of individuals who are ranked below him, is given by  

                                         𝑃𝑅 = 100 −
100(𝑅−

1

2
   )

𝑛
= 𝑃, 𝑠𝑎𝑦,                                 …(5)                     

since the rank R of the individual really represents the interval from 𝑅 −
1

2
  to 

𝑅 +
1

2
.  The scale value corresponding to this PR can now be obtained as the 

value of a normal deviate below which the area is P/100. In the case of tied 

ranks, the PR values can be obtained from the frequency distribution of ranks.  



Example A group of 100 workers was rated by a supervisor on a five-point 

scale –A, B,C,D and E–with respect to efficiency, A being the highest rating and 

E the lowest. Obtain the scale value for each rating from the following 

frequency distribution of the rating: Obtain the Scale value for each rating 

from the following frequency distribution of the rating:   

Rating A B C                D E 

Frequency  5 24 45            23 3 

Under the usual assumption of normality for the trait under 

consideration, we obtain, for the rating the scale values as follows: 

Raking A   B      C   D  E 

Area covered by the 
rating 
               𝜙(𝑥2)- 𝜙(𝑥1) 
 

0.05 0.24   0.45 0.23 0.03 

Area covered by the 
rating 

𝜙(𝑥1) 

0.95 0.71   0.26 0.03                  0 

Lower limit of the trait  
𝑥1 

1.645 0.553 -0.643 -1.881 −∞ 

Upper limit of the trait  
𝑥2 

∞ 1.645 0.553 -0.643 -1.881 

Ordinate at the upper 
limit 

𝜙(𝑥1) 

0.103
1 

0.342
4 

0.3244 0.0680 0 

Ordinate at the upper 
limit 

𝜙(𝑥2) 

0 0.103
1 

0.3424 0.3244 0.068 

Scale value
 𝜙(𝑥1)−𝜙(𝑥2)

𝜙(𝑥2)−𝜙(𝑥1)
 2.062 0.997 -0.040 -1.115 -2.267 

SCALING OF QUALITATIVE ANSWERS TO A QUESTIONNAIRE  

The answers to the items in an attitude or personality test or a test of a 

similar type will be qualitative 𝑒. 𝑔 , ‘Yes ‘ and ‘No’, or ‘Strongly approve’,   

‘Approve’, ‘Undecided’, ‘Disapprove’ and ‘Strongly disapprove’. It is necessary  

to allot numerical score to the answers so as to obtain the total score of an 



individual measuring his attitude or personality. The method of scaling is 

exactly similar to Likert’s rating scale. The questionnaire is first administered  

to a group of individuals and the frequency distribution of the answers is 

obtained. From the observed distribution, Likert’s scale values are then 

obtained for different answers to the questionnaire. 

SCALING OF JUDGMENTS OF A NUMBER OF PRODUCTS: PRODUCT SCALE 

It often happens that the ability or the trait in which we are interested 

cannot be expressed as a test score. This necessitates the construction of 

product scales. In such scales Excellence of performance is determined by 

comparing an individual’s product with various standard products, the values 

of which are already determined by a number of competent and expert judges, 

hand-writings, compositions, etc., are well-known examples. 

                We shall discuss the method of paired comparisons due to Thurston, 

suppose there are 𝑘 standard products judges, by a group of 𝑁 judges. All 

possible pairs of products 𝑘(𝑘 − 1)/2 in all are presented to a judge and he is 

to select one member of each pair in preference to the other. The can be 

presented in the form of a proportion matrix.  

 

 

Here Þij is the proportion of judges preferring the 𝑖𝑡ℎ product to the 𝑗𝑡ℎ 

one and Þji=1-Þij. By convention Þij=1/2. 

Now, suppose that the distribution of difference in judgments (𝑇) of the 

𝑖𝑡ℎ and 𝑗𝑡ℎ products is normal with mean Si-Sj (the difference of their scale 

values) and s.d. 𝜎𝑖−𝑗 . Thus  

 1                    2       …Product….         k  

                 1                                 
Product 2        

           : 
          k 

p11    p21   ….  ….   Pk1     
p12        p22     ….    ….    Pk2      
  :              :         :        :       : 
p1k        p2k     ….     ….    Pkk       

 



Þ𝑖𝑗 =
1

𝜎𝑖−𝑗√2𝜋
∫ 𝑒𝑥𝑝 [−

{𝑇 − (𝑆𝑖 − 𝑆𝑗)}
2

2𝜎𝑖−𝑗
2 ]

∞

𝑜

𝑑𝑇 

=
1

√2𝜋
∫ exp[−𝜏2
∞

−(𝑆𝑖−𝑆𝑗)/𝜎𝑖−𝑗

/2]𝑑𝜏, 

so that                𝑆𝑖 − 𝑆𝑗 = −𝑥𝑖𝑗𝜎𝑖−𝑗                                             …(6) 

where 𝑥𝑖𝑗  is the value of the normal deviate the area to the right of which is 

Þ𝑖𝑗. Equation (5.6) is known as Thurnstone’s law of comparative judgment. 

Assuming that the distribution of judgments for each product has the same 

s.d. σ and that judgments for any two products are uncorrelated, 𝜎𝑖−𝑗 = 𝜎√2,  

a constant. 

Taking 𝜎𝑖−𝑗 = 𝜎√2  as the unit of the scale, we have  

                     𝑆𝑖 − 𝑆𝑗 = −𝑥𝑖𝑗                   …(6a) 

                   

                     DIFFERENCE IN JUDGEMENTS   

                Fig. Determination the difference of scale-value of 
                   judgements (Si – Sj) from the proportion pij 

    Thus we get the ( 𝑆𝑖 − 𝑆𝑗) matrix:  

 1                    2       …Product….         k  

pij 

Probability 

Density 
Xij 



 

 

 

 

  The column means give 𝑆1, 𝑆2, ……𝑆𝑘, as deviations from 𝑆̅ =
1

𝑘
∑ 𝑆𝑖
𝑘
𝑖=1 . 

If we take the origin at 𝑆̅, then the column means provide us with the scale –

values for the 𝑘 products. Alternatively, we could take the origin at the 

minimum scale value and adjust the scale values accordingly.  

Example.  200 individuals were asked about their preferences for 4 different 

types of music. The proportion matrix is given below. Find the scale values. 

  
   1                                      

 Music type 
2                    3      4       

 
 

 
   4  

                              1 
     Music type   2       
                              3 
                              4 

.500 

.230 

.122 

.108 

.770                .878 

.500                .743 

.257                .500 

.155                .209 

 .892 
.845 
.797 
.500 

       Under the usual assumption of normality of the distribution of difference 

in judgments with means 𝑆𝑖 − 𝑆𝑗and s.d, 𝜎𝑖−𝑗,and with the constant 𝜎𝑖−𝑗, taken 

as the scale we get the matrix of scale separations 𝑆𝑖 − 𝑆𝑗 as follows: 

  

     1  

Musictype 
       2 

 

    3 
 
   4 

                                1 
Music type           2 
                                3 
                                4 

    0 
-.739 
-1.17  
-1.24 

    .739             
       0 
   -.653 
 -1.015 

1.165         
   .653 
     0 
 -.831 

1.237 
1.015 
   .831 
     0 

 Column mean -785    -.232   .247   .771 

 

With the origin at 𝑆 the mean scale values, the column means give us the 

corresponding scale values for the four music types. With origin at 𝑆1, on the 

other hand, we get the following scale values: 

                 1  
                                
Product 2        

           : 
          k 

s1- s1     s2-s1  ….   .... sk-s1  
 
s1-s2      s2-s2  ….   …. sk-s2 
   :              :        :      :      :    
s1-sk       s2-s2  …  ….  sk- sk 

 



Music type 1    2     3    4 

Scale value 0 .553 1.032 1.556 

  

NORMS AND REFERENCE GROUPS 

By liner transformation or normalization of test scores, we get the scale 

values with which we can combine the performances of an individual in 

different test or can make comparison between individuals. But in many 

situations, it is not sufficient to have the scale value, but we have to know on 

the basis of which group of individuals the scaling was done. We have to know 

the age, sex, education and occupation and other characteristics of the 

reference group. A scale values with reference to a certain group may not be 

so good, but it may be very good for another reference group .Thus, when we 

want to judge the performance of an individual by his test score, we must 

know what to compare it with,𝑖. 𝑒 .the norm we want to use. We must know 

the mean, standard deviation and percentile values for the group with which 

we compare an individual score. Thus a score may be good when compared to 

one norm (for a certain reference group). 

        Many tests are used for several purposes and for several groups of 

individuals. If the result of a test is to be used for comparison with several 

groups, it is necessary to have norms for each of the groups separately, unless 

they are known to be the same. To calculate the norms for several groups, the 

test has to be administered to a random representative sample from the 

population of the reference group. The size of the sample should not be too 

small so as to obtain stable norms .Norm data are however not necessary in 

practical situations where we want to select a number of individuals out of all 

applicants on the basis of test score, because the top individuals are to be 

selected, no what the norms are 

TEST THEORY  

The measurements on the psychological characteristics considered in 

previous sections were collected by various types of methods such as tests, 



questionnaires or ratings. Whatever may be the method of obtaining 

measurements, we made the assumption, though not explicitly, that the 

measurements were meaningful and reproducible. To be more exact we 

assumed that the measuring instrument used would give us a stable and 

consistent measure of the trait if we remeasured the trait under identical 

conditions .Technically, this aspect of the accuracy is known as the reliability 

of the measuring instrument. The second requirement is that the measuring 

instrument measures the trait which it is intended to measure. And 

technically this is known as the validity of the measuring instrument. 

With physical measurements these present no problems at all. For we 

know that if we use a non-flexible accurate measuring tape in the correct way, 

we shall get the exact length of an object, and this can be reproduced if 

remeasured under similar conditions. So physical measurements are, usually, 

always reliable and valid. But we are not so sure about psychological 

measurements. We have to verify in each case that we are getting reliable and 

valid measurements and then only can we use them with confidence. 

Before we actually discuss reliability and validity, we shall consider 

some simple results in test theory under a very simple model.  

LINEAR MODEL OF TEST THEORY 

We are interested in getting the true measure of an individual’s 

performance on at test. By applying a measuring instrument what we get is 

the individual’s raw score (obtained score) on the test. We can consider 

various types of relationship between the true score of the 𝑖𝑡ℎ individual(𝑡𝑖)  

and his raw score (𝑥𝑖). But the relationship that is usually adopted is the 

simplest one-a linear relationship. We assume that 

                                𝑥𝑖 = 𝑡𝑖 + 𝑒𝑖 ,    𝑓𝑜𝑟 𝑖 = 1,2………… , 𝑛,                                      …(7)                                                       

where 𝑒𝑖 = 𝑥𝑖 − 𝑡𝑖 is the error of measurement for the 𝑖𝑡ℎ individual? 

The raw score (𝑥) dose not equal the unknown true score (𝑡). The 

difference (𝑥 − 𝑡) which may be due to various factors is the error score (𝑒). 



In test theory we always consider only random errors(𝑒). Constant or 

systematic errors are assumed to be absent in test theory. Since we consider 

only random errors, it is reasonable to make the following assumption for 𝑒′𝑠: 

                                    

𝜇𝑒 = 0
𝜌𝑖𝑒 = 0
𝜌𝑒𝑔𝑒ℎ = 0

}                                                                             …(8) 

In words, the mean of error score is zero, the correlation between true 

score and error score is zero, and the correlation between error score from 

different testing occasions (or for two parallel tests, g and h, to be defined  

shortly) is zero. We note that under this model the estimates of 𝜇𝑒 , 𝜌𝑖𝑒  and 

𝜌𝑒𝑔𝑒ℎ  will approach zero if the number of individuals (𝑛) approaches infinity. 

In practice, however, the estimates are assumed to satisfy these relations for 

the given sample. 

Since only random errors are considered, for a large number of 

cases (𝑛 𝑙𝑎𝑟𝑔𝑒), the positive and negative errors of all magnitudes (small and 

large) will cancel each other with the result that the mean will be zero. 

Similarly, since only random errors are considered, there is no reason to 

expect any correlation between true scores and error scores for a large 

number of individuals. Large or small true scores will be expected to occur 

equally often with large or small error score. This is reasonable for both 

positive and negative scores. Thus we assume 𝜌𝑖𝑒 = 0 A similar argument will 

show that 𝜌𝑒𝑔𝑒ℎ = 0    is also a reasonable assumption. 

DEFINITION OF PARALLEL TEST 

Two tests are said to be parallel when it makes no difference which one 

is used. If 𝑔 and ℎ are two tests and if for the 𝑖𝑡ℎ individual 𝑡𝑖𝑔 ≠ 𝑡𝑖ℎ , then we 

cannot say that it makes no difference whether we use test g or h. So, in order 

that g and h may be parallel test, it is reasonable the assume that 

                   𝑡𝑖𝑔 = 𝑡𝑖ℎ ,       𝑓𝑜𝑟 𝑖 = 1,2,…… , 𝑛;                                                   …(9) 

𝑖. 𝑒, the true score of any individual should be the same on the two tests. 



Next, consistent with the definition of error score (8), we assume about 

the error scores on two parallel tests that 

                        𝜎𝑒𝑔 = 𝜎𝑒ℎ;                                                                                         …(10) 

𝑖. 𝑒, the standard deviations of errors on the two tests should be the same. 

Thus (9) and (10) defined parallel tests in terms of unknown quantities. These 

can be expressed in terms of the distributions of the raw score, using the 

relations (7), (8) and (9) as follows: 

From (7), since 𝜇𝑒 = 0, we have 𝜇𝑡 = 𝜇𝑥 for any test.  

From (9), we have 𝜇𝑡𝑔 = 𝜇𝑡ℎ , 𝜎𝑡𝑔 = 𝜎𝑡ℎ  and 𝜌𝑡𝑔𝑡ℎ = 1 

Also, from (7) and (8), we have 𝜎𝑥
2 = 𝜎𝑡

2 + 𝜎𝑒
2 for any test. 

Then we have  

                𝜇𝑥𝑔 = 𝜇𝑥ℎ  𝑎𝑛𝑑  𝜎𝑥𝑔𝜎𝑥ℎ  ,                                                                           …(11) 

For two parallel tests g and h 

Thus the means of raw scores on two parallel tests are equal; and so are 

the standard deviations. 

If we have more than two parallel tests (at least three-say g, h and k) .we 

have another condition to check; besides (11), before we can conclude that 

the tests g, h and k are parallel .And this condition is 

                                  𝜌𝑥𝑔𝑥ℎ = 𝜌𝑥𝑔𝑥𝑘 =   𝜌𝑥ℎ𝑥𝑘   ,                                                      …(12) 

 The condition of equality of all inter-correlations between raw scores of the 

parallel tests 

Now we establish (12) by first obtaining an expression for 𝜌𝑥𝑔𝑥ℎ  in 

terms of 𝜎𝑖
2𝑎𝑛𝑑 𝜎𝑥

2 . 

            𝜌𝑥𝑔𝑥ℎ =
𝑐𝑜𝑣(𝑥𝑔,𝑥ℎ)

𝜎𝑥𝑔 𝑋 𝜎𝑥ℎ
 



=
𝑐𝑜𝑣(𝑡𝑔, 𝑡ℎ) + 𝑐𝑜𝑣(𝑡𝑔, 𝑒ℎ) + 𝑐𝑜𝑣(𝑡ℎ , 𝑒𝑔) + 𝑐𝑜𝑣(𝑒𝑔, 𝑒ℎ)

𝜎𝑥𝑔  𝑋 𝜎𝑥ℎ
 

                       =
𝑐𝑜𝑣(𝑡𝑔,𝑡ℎ)

𝜎𝑥𝑔
2   (Since g, h are parallel tests, the remaining covariance 

terms are all zero and𝜎𝑥𝑔 = 𝜎𝑥ℎ ). 

                       =
𝜌𝑡𝑔𝑡ℎ 𝜎𝑡𝑔𝜎𝑡ℎ

𝜎𝑥𝑔
2   

                       = 𝜎𝑡𝑔
2 /𝜎𝑥𝑔

2    (since 𝜌𝑡𝑔𝑡ℎ = 1 and 𝜎𝑡𝑔 = 𝜎𝑡ℎ, g and h being parallel). 

Thus for two parallel tests g and h, 

           𝜌𝑥𝑔𝑥ℎ = 𝜎𝑡𝑔
2 /𝜎𝑥𝑔

2   

                       = 𝜎𝑡ℎ
2 /𝜎𝑥ℎ

2 (𝑠𝑖𝑛𝑐𝑒 𝜎𝑡𝑔 = 𝜎𝑡ℎ , 𝜎𝑥𝑔 = 𝜎𝑥ℎ)                                     …(13) 

Equ. (13) easily establishes equ. (12) for a number of parallel tests. 

Thus for three or more parallel tests the means of raw scores are equal; 

so are the variances and the inter correlations. In addition to satisfying these 

criteria, parallel tests should also be similar with respect to the content and 

nature of items, etc., which may be verified by expert judgment only.  

 

DEFINITION OF TRUE SCORE  

Equations (8) define error score. Then the true score (𝑡) can be 

regarded as the difference (𝑥 − 𝑒) between the raw score and the error score. 

Thus,  𝑡𝑖 = 𝑥𝑖 − 𝑒𝑖 .  

Alternatively, we may define the true score of an individual as the limit 

of the average of the raw score of the individual on a number of parallel tests 

𝑘  approaches  infinity, 𝑖. 𝑒 . 

𝑡𝑖 = lim
𝑘⟶∞

[∑𝑥𝑖𝑔/𝑘

𝑘

𝑔=1

]                                                                    … (14) 



With this definition of 𝑡, the error score is defined as the difference 𝑥 −

𝑡;   𝑖. 𝑒. ,   𝑒 = 𝑥 − 𝑡. 

 

ERROR VARIANCE (STANDARD ERROR OF MEASUREMENT) 

From equations (7) and, we have. 

𝜎𝑥
2 = 𝜎𝑖

2 + 𝜎𝑒
2, 

And from equation (13), we have, if g and h are parallel tests, 

𝜎𝑡
2 = 𝜌𝑥𝑔𝑥ℎ𝜎𝑥

2, 

Thus combining the above two relations we get 

𝜎𝑥
2 = 𝜎𝑥

2𝜌𝑥𝑔𝑥ℎ + 𝜎𝑒
2 

Or                                                     𝜎𝑒
2 = 𝜎𝑥

2(1 − 𝜌𝑥𝑔𝑥ℎ) 

Or                                                     𝜎𝑒 = 𝜎𝑥√1 − 𝜌𝑥𝑔𝑥ℎ                                             …(15) 

 Equation (5.15) gives the standard deviation of the error scores, which 

is technically known as the standard error of measurement. 

 

DEFINITION OF RELIABILITY 

We define reliability as the reproducibility of the measurements when 

remeasured under identical conditions. Spearman first introduced the term 

‘reliability’. The reliability of a test (a measuring instrument) is given by the 

correlation between the raw scores of the given test and a parallel test. Thus, 

if g be the given test and h any other test parallel to g, then the reliability of g 

is measured by 𝜌𝑥𝑔𝑥ℎ  and will be denoted as 𝜌𝑔𝑔 . 

From equation (5.13), we know that 

 𝜌𝑔𝑔 = 𝜎𝑡𝑔
2 /𝜎𝑥𝑔

2  



                     = 1 − 𝜎𝑒𝑔
2 /𝜎𝑥𝑔

2           …(16) 

by virtue of the relation 𝜎𝑡
2 = 𝜎𝑥

2 − 𝜎𝑒
2. 

Reliability can thus be defined as the ratio of the true score variance to 

the raw score variance or as the proportion of the raw score variance that is 

the true score variance. Reliability ranges from zero to one.  𝜌𝑔𝑔 = 1 when 

 𝜎𝑒 = 0. But  𝜎𝑒 = 0 if and only if all  𝑒𝑖 = 0, since  𝜇𝑒 = 0. Thus, the test is 

perfectly reliable (𝜌𝑔𝑔 = 1) if   𝑥𝑖 =   𝑡𝑖  for each 𝑖, and then  the raw scores are  

the true scores. 𝜌𝑔𝑔 = 0 if   𝜎𝑖 = 0 (or , equivalently, if 𝜎𝑒 = 𝜎𝑥), 𝑖. 𝑒., when 

  𝑥𝑖 = 𝑡 +   𝑒𝑖  for each 𝑖, and then the test is unreliable (here 𝑡 denotes true  

score  for all 𝑖).  

For any test g, therefore, 

0 ≤ 𝜌𝑔𝑔 ≤ 1. 

It may be  noted , however , that  when  the reliability is measured from  

a sample  of individuals , one  obtain  a negative coefficient. 

 

EFFECT OF TEST LENGTH ON THE RELIABILITY OF A TEST 

By the length of a test we mean the number of items in the test. Let us 

augment the length of the test by adding to (𝑘 − 1) parallel tests of the same 

length. So the composite test is now made of 𝑘 parallel test of the same length 

and the length of the composite test is 𝑘 times the length of the original test. 

The effects of this increase in length on the true score variance and raw score 

variances are the following: 

Denoting the 𝑘  parallel tests by  𝑔1,   𝑔2……….  𝑔𝑘 and the composite test 

by 𝐺, we have 

𝜎𝑖𝐺
2 = 𝜎2(𝑡𝑔1 + 𝑡𝑔2 +⋯+ 𝑡𝑔𝑘) =∑∑𝜌𝑡𝑔𝑖𝑡𝑔𝑗𝜎𝑡𝑔𝑖

𝑗𝑖

𝜎𝑡𝑔𝑗
 

(Summation over  𝑖, 𝑗 = 1, 2,…… . . , 𝑘) 



                               = 𝑘2𝜎𝑡𝑔1
2 (since the component tests are parallel, 

                                                   𝜌𝑡𝑔𝑖𝑡𝑔𝑗
= 1 and 𝜎𝑡𝑔𝑖

= 𝜎𝑡𝑔𝑗
   (for all 𝑖, 𝑗)             …(17) 

and,   𝜎𝑥𝐺
2 = 𝜎2(𝑥𝑔1 + 𝑥𝑔2 +⋯+ 𝑥𝑔𝑘) =∑𝜎𝑥𝑔𝑖

2 + ∑∑𝜌𝑥𝑔𝑖
≠𝑗        𝑖

𝑘

𝑖=1

𝑥𝑔𝑖𝜎𝑥𝑔𝑖
𝜎𝑥𝑔𝑗

 

                         = 𝑘𝜎𝑥𝑔1
2 + 𝑘(𝑘 − 1)𝜌𝑔𝑔𝜎𝑥𝑔1

2                                                             …(18) 

Since 𝜌𝑥𝑔𝑖𝑥𝑔𝑗
= 𝜌𝑔𝑔(𝑖. 𝑒 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦) and 𝜎𝑥𝑔𝑖

= 𝜎𝑥𝑔𝑗
 for parallel tests 𝑔𝑖 , 𝑔𝑗  

Using equation (16), we may write down the reliability of a test whose 

length is increased 𝑘 times (by adding 𝑘 − 1 parallel tests) as  

𝜌𝐺𝐺 = 𝜎𝑖𝐺
2 /𝜎𝑥𝐺,

2  

which can be expressed in terms of 𝜌𝑔𝑔 , by using equation (15) and (18) as, 

𝜌𝐺𝐺 =
𝑘2𝜎𝑖𝑔1

2

𝑘𝜎𝑥𝑔1
2 [1 + (𝑘 − 1)𝜌𝑔𝑔]

 

                                                         =
𝑘𝜌𝑔𝑔

1+(𝑘−1)𝜌𝑔𝑔
                                                       …(19) 

where 𝜌𝑔𝑔 is the reliability of the original is test and 𝜌𝐺𝐺  is the reliability 

of the lengthened test G, whose length is equal to k times the length of g1.  

Formula (19) is known as the general Spearman brown formula. In the 

usual case where k = 2, Spearman–Brown formula or doubled test length is 

                                                                 𝜌𝐺𝐺 =
2𝜌𝑔𝑔

1+𝜌𝑔𝑔
                                           …(20) 

The derivation of formula (19) and (20) involves the assumption that 

the additional test parts used in lengthening the original test are parallel to 

those in the original test 

The formula for determining k is obtained by solving equation (19) for k: 



                                                           𝑘 =
𝜌𝐺𝐺(1−𝜌𝑔𝑔)

𝜌𝑔𝑔(1−𝜌𝐺𝐺)
,                                           …(21) 

Where 𝜌the reliability of the original test and 𝜌𝐺𝐺  is is the desired reliability of 

the lengthened test after the original test is lengthened 𝑘    

  Example.  What would be the reliability coefficient when the original 

test of reliability 0.50 would be doubled in length?   

We have in this case 𝜌𝑔𝑔 = 0.50 and 𝑘 = 2. then by equation (20) we 

get, as the reliability of the lengthened test 

𝜌𝐺𝐺 =
2 X .50

1 + .50
= 0.67. 

Example.   By what amount should the length of a test of reliability 0.66 

be increased so as to get a reliability of 0.95 for the lengthened test?   

Here 𝜌𝑔𝑔 = 0.67 and 𝜌𝐺𝐺 = 0.95.  Then by equation (21), we have  

                                              𝑘 =
.95(1 − .67)

.67(1 − .95)
=
.95 X .33

.67 X .05
=
.3135

.0335
= 9(Approximately). 

 

PRACTICAL METHOD OF ESTIMATING TEST RELIABILITY  

Reliability, as defined above and denoted by 𝜌𝑔𝑔 , is based on population 

data (an infinite number of individuals being tested). In practice, we have only 

a sample of finite size 𝑛 and the corresponding sample correlation estimated 

the reliability. There are available mainly four methods for estimated test 

reliability. These are: 

(a) The parallel–test method, (b) the test-retest method, (c) the split–

half  method and (d) the Kuder-Richardson method. 

Parallel –test method  

Reliability was defined as the correlation between raw scores on two 

parallel tests. In this method, two tests are constructed satisfying as far as 

possible the conditions for parallelism. Then the two tests are administered to 



the same group with a suitable time lag and the reliability (𝜌𝑔𝑔) is estimated 

by the correlation(𝑟𝑔𝑔) between the raw scores of the parallel test obtained 

from the sample. 

For many situations, this is the best method of estimating test reliability. 

However, the ability measured should not change in the time interval between 

the administrations of the test. For many scholastic achievement and mental 

ability tests, this condition is fulfilled. But there are case where the ability 

tested will change, 𝑒. 𝑔., in performance tests like type-writing tests, athletic 

skills tests etc., if the individuals continue practicing during the interval 

between the two administrations. 

The parallel- test reliability may also be obtained  by administering  

both the tests at the same session , In this case also the  scores  on the second 

test may be influenced either  by familiarity with the  material  in the first  test  

or by  fatigue. 

Generally speaking, parallel –test reliability will give a satisfactory 

result .But the difficulty is to construct two parallel test. So when only one test 

is available, we are to use one of the other methods. 

Test-retest method   

This method consists in administering the same test twice after a 

suitable time interval to eliminate familiarity with the material, test fatigue, 

etc., and then finding the correlation between the test scores and retest 

scores. If, however, the individuals duplicate their first performance, then the 

reliability will be over-estimated by this method. 

If the test is repeated immediately, the memory effect, practice and 

confidence will increase the scores on retesting. If sufficient time elapses 

before the second administration, then these effects will be absent and the 

test-retest correlation will give an estimate of the stability of the test scores. 

As in the parallel-test method, here also, the experimenter will have to 

adjust the time interval and control the activity of the individuals within the 

time interval so as to minimize the effects due to memory, fatigue practice etc. 



The difficulty with both these methods is that sometimes it is difficult to 

get the individuals again after an interval of time. In such a case, we cannot 

apply either the same test twice or two parallel–tests. For such case, we have 

the following methods. 

Split-half method  

Here one test is applied once and then the score is divided into two 

equivalent halves, and the correlation between the score on the half-tests 

estimates the reliability of each half-tests. Then by Spearman- Brown formula 

(5.20), we may estimate the reliability of the original (full) test.   

The test may be split into two parts in a number of ways. The 

commonest way is to split the test on the basis of odd-numbered and even-

numbered items. 

In many performance tests or personality tests, it is difficult to construct 

parallel test or to retest with the same test. So the split-half method is 

regarded as the best method in such cases. The objection that is often raised is 

that there is no unique way of splitting the test and unique split-half 

correlation. In most Power test (where one dose not emphasize the speed or 

quickness with which the work can be performed), the items are arranged in 

order of difficulty, and the odd-even split provides a unique estimate of 

reliability 

   Rulon presented the following formula for estimating reliability from 

two subtest scores (of the same test): 

                                                   𝑟𝑔𝑔 = 1 −
𝑠𝑑
2

𝑠𝑥
2                                                            …(22) 

where 𝑠𝑥
2 is the variance of raw scores and 𝑠𝑑

2 is the variance of the difference 

of raw scores on the two halves of the test. 

Similar results may be obtained by using the formula due to Guttman, 

which is similar to apply: 

                                                    𝑟𝑔𝑔 = 2 [1 −
𝑠1
2+𝑠2

2

𝑠𝑥
2 ],                                               …(23) 



where 𝑠1
2 and 𝑠2

2 are the variances of raw scores on the two halves. 

Equations (20), (22) and (23) will give the same reliability coefficient 

when 𝑠1
2 = 𝑠2

2, 𝑖. 𝑒., when the two halves have equal raw scores variances. If 

𝑠1
2 ≠ 𝑠2

2, then the split-half reliability given by equ.(20) will be the highest. 

Kuder-Richardson method   

We shall obtain the Kuder-Richardson formulae for estimating test 

reliability by making the same assumptions as were made originally by Kuder 

and Richardson. Let us consider a test of length 𝑘 which is made up of 𝑘 

parallel items .Then the raw score variance is given by 

𝜎𝑥
2 = 𝜎(𝑥1+𝑥2+⋯+𝑥𝑘)

2 = ∑𝜎𝑥𝑔
2

𝑘

𝑔=1

+∑∑𝜌𝑥𝑔𝑥ℎ
ℎ𝑔   ≠

𝜎𝑥𝑔𝜎𝑥ℎ . 

Since the items are all parallel 𝜌𝑥𝑔𝑥ℎ  will be equal to 𝜌𝑔𝑔 (reliability of item 𝑔) 

for all 𝑔 and ℎ and 𝜎𝑥𝑔  will be the same for all 𝑔. Thus, 

𝜎𝑥
2 = 𝑘𝜎𝑥

2 + 𝑘(𝑘 − 1) 𝜌𝑔𝑔𝜎𝑥𝑔
2 , 

so that the item reliability ( 𝜌𝑔𝑔)  can be expressed as follows: 

 𝜌𝑔𝑔 =
𝜎𝑥
2 − ∑ 𝜎𝑥𝑔

2𝑘
𝑔=1

(𝑘 − 1)∑ 𝜎𝑥𝑔
2𝑘

𝑔=1

, 𝑠𝑖𝑛𝑐𝑒 ∑𝜎𝑥𝑔
2 = 𝑘𝜎𝑥𝑔

2

𝑔

𝑔=1

 

Next, to obtain the reliability of the test of 𝑘 parallel items from 𝜌𝑔𝑔, we 

apply the general Spearman–Brown formula (19): 

𝜌𝐺𝐺 =
𝑘𝜌𝑔𝑔

1 + (𝑘 − 1)𝜌𝑔𝑔
 

= 𝑘
𝜎𝑥
2 − ∑ 𝜎𝑥𝑔

2𝑘
𝑥=1

(𝑘 − 1)∑ 𝜎𝑥𝑔
2𝑘

𝑥=1

 x 
1

1 + (𝑘 − 1)[(𝜎𝑥
2 − ∑ 𝜎𝑥𝑔

2 )/(𝑘 − 1)∑ 𝜎𝑥𝑔
2 ]𝑘

𝑥=1
𝑘
𝑥=1

 

                                             = [
𝑘

𝑘−1
] x [

𝜎𝑥
2−∑ 𝜎𝑥𝑔

𝑘
𝑥=1

𝜎𝑥
2 ].                                             …(24)                                                                                       



This is the Kuder-Richardson “formula 20” for obtaining the reliability 

of a test of 𝑘 parallel items in terms of 𝑘, 𝜎𝑥
2 and 𝜎𝑥𝑔

2 . In practice, this is 

estimated by  

                                               𝑟𝐺𝐺 = [
𝑘

𝑘−1
] [
𝑠𝑥
2 − ∑ 𝑠𝑥𝑔

2𝑘
𝑔=1

𝑠𝑥
2 ]                                      …(24a) 

where 𝑠𝑥
2 is the sample variance of raw total scores and 𝑠𝑥𝑔

2  is the same for 𝑔. 

If the scoring of items be 1 for a correct response and 0 for wrong 

response, then 𝑠𝑥𝑔
2 = 𝑝𝑔(1 − 𝑝𝑔), where 𝑝𝑔 is the sample proportion of correct 

response for item 𝑔. Then formula (24a) simplifies to 

                                            𝑟𝐺𝐺 = [
𝑘

𝑘−1
] [
𝑠𝑥
2 − ∑ 𝑝𝑔(1−𝑝𝑔)

𝑘
𝑔=1

𝑠𝑥
2 ]                                   …(25)    

If in formula (24) we assume that the 𝑘 parallel items are of equal 

difficulty, the scorning being 1 for a correct and 0 for a wrong response, with 

𝜋  as the common difficulty value for all items, then  

                                                         𝜎𝑥𝑔
2 = 𝜋(1 − 𝜋) = 𝜋 − 𝜋2 

Now, the mean of obtained scores on the test is   

                                                                           𝜇𝑥 = 𝑘𝜋              

Thus, 

𝜎𝑥𝑔
2 =

𝜇𝑥
𝑘
−
𝜇𝑥
2

𝑘2
, 

Then from formula (24), we have 

𝜌𝐺𝐺 = [
𝑘

𝑘 − 1
] [1 −

𝑘𝜎𝑥𝑔
2

𝜎𝑥
2
] 

                                                        = [
𝑘

𝑘−1
] [1 −

𝜇𝑥−𝜇𝑥
2/𝑘

𝜎𝑥
2 ]                                      …(26)      



This is the Kuder-Richardson “formula 21” for obtaining the reliability 

of a test of 𝑘 parallel items of equal difficulty in terms of 𝑘, 𝜎𝑥
2 and 𝜇𝑥. In 

practice this is estimated by  

                                                    𝑟𝐺𝐺 = [
𝑘

𝑘−1
] [1 −

𝑥̅−𝑥̅2/𝑘

𝑠𝑥
2 ]                                  …(26a)         

where 𝑥̅ and 𝑠𝑥
2  are the sample mean and variance of raw total scores. 

We have divided the Kuder-Richardson formula under original 

assumptions. However it is also possible to derive them under less restrictive 

conditions. 

 

VALIDITY  

In the previous section, we considered one essential property of a 

measuring instrument – the reliability. Now we shall consider the second 

essential property– the validity. A psychological test (a measuring instrument) 

should not only be reliable, but it should also be valid. By this we mean that 

the test should measure what it is supposed or intended to measure. If  we 

want to  measure a trait A for a group of individuals  with the test, we must be 

sure, before we can use the test confidently for that purpose, that it actually 

measures the trait A and also measures it reliably. The term ‘validity’ is a 

relative term-a test is valid for a particular trait for a particular group or for a 

particular situation. We may use the same test for measuring different traits 

and then we must obtain the validity separately for each case. 

As with the reliability of physical measurements, in the case of the 

validity of such measurements also, we face no great problem. But the 

situation is different with psychological measurements.  

To estimate the validity of a test we must know which particular trait 

we want to measure. We make use of some known measure of the trait called 

the criterion variable. The validity of the test is then estimated by computing 

a coefficient (the coefficient of validity) which determines relationship 

between the scores obtained on the test and the values of the criterion 



variable and getting measures on this variable which are to be compared with 

the scores on the test. Often it is difficult to get reliable measures on the true 

criterion. What we get are only approximate measures on the criterion 

variable. Depending upon the situation, the criterion scores may be of any of 

the following kinds: ratings by judges (experts who know the group) on the 

trait measured scores on another valid test of the (we may validate a newly 

constructed test for trait A by selecting as the criterion variable the score on a 

well–established test for trait A), measure of later success (for a test for 

recruiting persons in a vocation), etc. We discuss below the different concepts 

of validity: 

Predictive validity 

This type of validity arises when we use a test for trait for selecting 

applicant for a particular course or job and the criterion variable is the degree 

of success at a later period, 𝑖. 𝑒., after the recruits have completed the course 

or have been on the job for a sufficient period. The criterion variable is the 

performance at that later period– grades or ratings on completion of the 

course or after a certain period of employment. A test has a high predictive 

validity if it can forecast efficiently later performance on a particular 

measurable aspect of life. And this is of importance in the selection or 

recruitment of individuals for different courses of study or training 

programmes or jobs. 

 

 

Concurrent validity  

Concurrent validity is obtained for tests for which the criterion variable 

is also available at the same times as the test results and we are not to wait as 

in the case of predictive validity. Tests are constructed for measuring a 

variable for which the result also may be obtained without waiting, because it 

is easier and sometimes saves time and expenditure, while giving the same 

results as the criterion variable. Concurrent validity is used for diagnostic test 

(𝑒. 𝑔. in clinical diagnosis). Both types of validity (predictive and concurrent) 



are obtained by computing the correlation between the test scores and 

criterion scores and the validity is the correlation coefficient. 

Content validity 

Sometimes tests are constructed to study the knowledge of the 

individuals on certain specific areas of study, say verbal ability, geometrical 

drawing ability, etc. There are large numbers of items which measure these 

areas and, in a test, we have only a sample of these items. In content validity of 

a test, we try to ascertain how far the test covers the field of study under 

investigation or in other words, how good the items of the test are as a sample 

from the totality of all items for that test. It is, however, not possible to 

express content validity as a validity coefficient, as is possible with the 

previous two validities. 

Construct validity  

This is comparatively a new concept in validity theory. This concept is 

found useful when either there is no external criterion variable or it is difficult 

to obtain measurements on the criterion variables. This validity cannot be 

expressed in a single measure as the correlation between test scores and 

criterion scores. Validity in this case is demonstrated by showing that the 

predictions expected on the basis of theory may be confirmed by the test. 

Some of the common ways of establishing construct validity are the following: 

(1) Correlating different items or parts of the test. There correlations should 

be high if the test is measuring a unitary variable.  

(2) Correlating different tests which measure the same variable.  

CORRECTIONS FOR ATTENUATION: 

A validity coefficient expresses the extent of agreement of the test score 

with a measurement of the criterion variable. Both these measurements are, 

however, liable to errors, which are due to unreliability of the measuring 

instruments. It is possible to develop a correlation for these errors, known as 

the correction for attenuation. 



The corrected value of the validity coefficient will estimate the 

relationship of the test score and the criterion score, had both the 

measurements been completely reliable. 

Let 𝑇𝑖  and 𝐶𝑖  be the observed test score and criterion score for the 𝑖𝑡ℎ 

individual, 𝑡𝑖  and 𝑐𝑖  the corresponding true scores, and 𝑒𝑖  and 𝑒𝑖
′ the errors. 

Thus,  

                                           𝑇𝑖 = 𝑡𝑖 + 𝑒𝑖  and  𝑐𝑖 = 𝑒𝑖 + 𝑒𝑖
′  

all expressed as deviations from means. 

Thus 𝑟𝑖𝑐 the true validity coefficient, is  

                                 𝑟𝑡𝑐 =
∑(𝑇𝑖−𝑒𝑖)(𝐶𝑖−𝑒𝑖

′)

𝑁𝑠𝑡𝑠𝑐
  (N being the total number of individuals), 

so that   

  𝑟𝑡𝑐𝑠𝑡𝑠𝑐 =
∑𝑇𝑖𝐶𝑖

𝑁
−
∑𝑇𝑖𝑒𝑖

′

𝑁
−
∑𝐶𝑖𝑒𝑖

𝑁
+
∑𝑒𝑖𝑒𝑖

′

𝑁
 

Assuming independence of true scores and error scores and of error 

scores themselves, 

𝑟𝑡𝑐 =
𝑟𝑇𝐶𝑠𝑇𝑠𝐶
𝑠𝑡𝑠𝑐

 

From (5.16), we know 

                                                        𝑟𝑇𝑇 =
𝑠𝑡
2

𝑠𝑇
2  and 𝑟𝐶𝐶 =

𝑆
𝐶2

𝑆𝐶2
 

𝑟𝑇𝑇 and 𝑟𝐶𝐶  being estimates of reliability of test score and criterion scores.  

Thus,  

                                                        𝑟𝑡𝑐 =
𝑟𝑇𝐶

√𝑟𝑇𝑇𝑟𝐶𝐶
                                                   …(27)     

But this coefficient is of little practical value, since a pair of perfectly reliable 

test and criterion is rarely realized. Very often we shall be using test scores 

which are contaminated with errors for the purpose of prediction. There, it 



may be of interest to know what would be the validity coefficient had a 

perfectly reliable criterion been available. In the same way, we can find the 

correlation between true criterion score and observed test score, as  

                                                            𝑟𝑡𝑐 =
𝑟𝑇𝐶

√𝑟𝐶𝐶
.                                                    …(28) 

 

EFFECT OF TEST LENGTH ON TEST PARAMETERS 

We have seen in previous section, the effect of test length on the true 

score variance (equ.17), on the observed score variance (equ.18) and on the 

reliability of a test (equ.19). Using notations already introduced, it is easy to 

see the effect of test length on true mean and observed score mean: 

                                                                 𝜇𝑡𝐺 = 𝑘𝜇𝑡𝑔                                                 …(29) 

and                                                          𝜇𝑥𝐺 = 𝑘𝜇𝑥𝑔                                                …(30) 

To find the effect of test length on the validity of a test, we first consider the 

case where the original test is lengthened by adding to it (𝑘 − 1)  parallel test 

of the same length and the original criterion variable is lengthened by adding 

to it (𝑙 − 1) parallel criterion variables of the same length, such that each pair 

of component test and criterion variable gives the same validity coefficient.  

Let us denote the total test score by𝑥𝐺  :    

                                                      𝑥𝐺 = 𝑥𝑔1 + 𝑥𝑔2 +⋯……+ 𝑥𝑔𝑘     

and the total criterion score by 𝑦𝐻:       

                                                      𝑦𝐻 = 𝑦ℎ1 + 𝑦ℎ2 +⋯… . .+𝑦ℎ𝑖  . 

Now we obtain the correlation coefficient of augmented test scores with 

the augmented criterion variable scores:   



                    𝜌𝑥𝐺𝑦𝐻 =
𝑐𝑜𝑣(𝑥𝐺, 𝑦𝐻)

𝜎𝑥𝐺  X 𝜎𝑦𝐻
             

                        =
𝑐𝑜𝑣(𝑥𝑔1 + 𝑥𝑔2 +⋯+ 𝑥𝑔𝑘 , 𝑦ℎ1 + 𝑦ℎ2 +⋯+ 𝑦ℎ𝑙)

√𝑣𝑎𝑟(𝑥𝑔1 + 𝑥𝑔2 +⋯+ 𝑥𝑔𝑘) X 𝑣𝑎𝑟(𝑦ℎ1 + 𝑦ℎ2 +⋯+ 𝑦ℎ𝑙)

 

                         =
∑ ∑ 𝜌𝑥𝑔𝑦ℎ𝜎𝑥𝑔𝜎𝑦ℎ

𝑙
ℎ=1

𝑘
𝑔=1

{𝑘𝜎𝑥𝑔
2 + 𝑘(𝑘 − 1)𝜌𝑔𝑔𝜎𝑥𝑔

2 }
1/2
 {𝑙𝜎𝑦ℎ

2 + 𝑙(𝑙 − 1)𝜌ℎℎ𝜎𝑦ℎ
2 }1/2

 

            =
𝑘𝑙𝜌𝑥𝑔𝑦ℎ𝜎𝑥𝑔𝜎𝑦ℎ

{𝑘 + 𝑘(𝑘 − 1)𝜌𝑔𝑔}
1/2
{𝑙 + 𝑙(𝑙 − 1)𝜌𝑔𝑔}

1/2𝜎𝑥𝑔𝜎𝑦ℎ

 

=
𝑘𝑙𝜌𝑥𝑔𝑦ℎ

{𝑘 + 𝑘(𝑘 − 1)𝜌𝑔𝑔}
1/2
{𝑙 + 𝑙(𝑙 − 1)𝜌ℎℎ}

1/2
 

   … (31) 

where 𝜌𝑥𝑔𝑦ℎ is the validity of the original test with the original criterion 

variable. 

𝜌𝑥𝐺𝑦𝐻 is the validity of the lengthened test(lengthened 𝑘 times), 

            with the lengthened criterion variable (lengthened 𝑙 times), 

𝜌𝑔𝑔 is the reliability of the original test and  

𝜌ℎℎ is the reliability of the original criterion variable. 

If the criterion variable is not lengthened, then the effect on the validity 

of increasing only the test length is obtained from (5.31) by putting𝑙 = 1: 

                                                          𝜌𝑥𝐺𝑦𝐻 =
𝑘𝜌𝑥𝑔𝑦ℎ

{𝑘+𝑘(𝑘−1)𝜌𝑔𝑔}1/2
                               …(32)                                                                                                

 

ITEM ANALYSIS  



We have already seen that in constructing a test will be determined by 

its reliability and validity. Now, in developing a test a large number of items 

supposed to measure the ability under consideration are tried over a large 

group of subjects. The question that naturally arises is : how well can the item 

be selected so that the required reliability and validity of the test can be 

achieved? This calls for item analysis  

The typical item analysis is carried out from two kinds of information –

an index of item difficulty and an index of item validity, which means how well 

the item discriminates in agreement with the rest of the items of the test or 

how well it predicts some external criterion. The most common index of item 

difficulty is  p𝑖, the proportion of subjects who pass the item. The commonly 

used index of item validity is r𝑖𝑒 , the correlation of the item score with some 

external criterion 𝑐 or, more often r𝑖𝑐 , the correlation of the item score with 

the total score. The most common use of item analysis data is the selection of 

the best items to compose the final test. It also enables the item-writer to 

modify the items in the required directions. The important features of the test, 

viz. mean, variance, reliability and validity, can be controlled by selecting 

items of the right type of difficulty, the right spread of difficulty, the right  

degree of item inter correlations and item validities. 

The difficulty index 𝑝𝑖  for the 𝑖𝑡ℎ  item is the proportion of subjects 

answering the item correctly. In a multiple–choice item with 𝑘 alternatives, 

Guilford has proposed a correction for guessing on the assumption that a 

subject either knows the answer correctly or guesses at random. If 𝑅𝑖 is the 

number of persons answering the item correctly & 𝑊𝑖  the number answering 

wrongly, the number of lucky guesses, 𝑖. 𝑒 of those who guess correctly,  is 

estimated as  
𝑊𝑖

𝑘−1
 so that the item difficulty corrected for guessing is         

𝑅𝑖 −
𝑊𝑖
𝑘 − 1

𝑅𝑖 +𝑊𝑖
 

                                                                                                                                       …(33) 

There are alternative formulae for correction for guessing too, based on other 

assumptions. In some methods of item analysis, the correction 𝑟𝑖𝑡 is estimated 



from those making extreme scores, generally the upper & lower 27% of total 

group. The estimation is, however, based on symmetry of the item score & 

total score distributions & linearity of regression of item score on total score. 

Four coefficients of correlation are commonly used to indicate the 

correlation of an item with a criterion (𝑟𝑖𝑐) or, more generally, of an item with 

the total(𝑟𝑖𝑡). They are biserial(𝒓𝒃𝒊), point biserial (𝒓𝒑𝒃), tetrachoric (𝒓𝒕) 

and the Φ coefficient. If the ability measured by the item is normally 

distributed and the criterion score is continuous, then 𝑟𝑏𝑖 can be used. If the 

item score is limited to 0 and 1, 𝑟𝑝𝑏 should be used. If the criterion variable 

and the ability measured by the item are both normally distributed, 𝑟𝑡 is called 

for. If the criterion is not a continuous variable, but a natural division into two 

groups, one can use the Φ coefficient. Another index, known as the index of 

discrimination between High and Low groups, is often used for item selection. 

 

INTELLIGENCE TESTS AND IQ 

Interest in the nature and measurement of intelligence is gradually 

increasing. Tests of intelligence and other mental qualities are being used in 

different spheres of life. By intelligence is meant the capacity for relational 

and constructive thinking for the attainment of some goal. In the discussion of 

intelligence, Spearman’s two–factor theory holds an important place. 

According to this theory, there is a common element, a general factor, in all 

our cognitive abilities- abilities that are concerned with the intellectual 

aspects of mind. Spearman named this as the g-factor and this g-factor can be 

identified with intelligence. Besides the g-factor, which is present in all 

abilities, there is according to Spearman a specific factor for each ability. 

Spearman’s theory was not, however, universally accepted. Thomson 

proposed a group- factor theory. According to Thomson, there are group 

factors, each of which is present in a number of different abilities. Thus, while 

they are more restricted than Spearman’s g-factor, they are less restricted 

than his specific factors. Some of the group factors are the following (i) verbal 

ability; (ii) numerical ability; (iii) musical ability; (iv) mechanical ability; 



All attempts to describe intelligence by a recourse to physiology have 

failed. Though differences of opinion exist on nature of intelligence, there is 

more or less general agreement as to the procedure of measuring intelligence. 

In an intelligence test, the following types of problem find a place: 

(i) Synonyms and antonyms 

One word is given, and the subject is required to select or to supply a 

second word which has the same or the opposite meaning.  

Example: (i) Superior is the opposite of …………. . 

                   (ii) Cruel is the same as (rough, unkind, persecutor, inhuman). 

(ii) Classification 

A set of word is given. All but one word are in some respect the same. 

The subject is to find out the odd word. 

Example: (i) Shoot, stab, murder, write. 

                   (ii) Rice, flour, bread, flower. 

(iii) Sentence completions 

  An incomplete sentence is given. The subject is to complete it. 

Example:  (i) Man is superior to other animals because………,  

                    (ii) A journey to moon can be made by……..,  

(iv)Mixed sentences 

A set of words is given. The subject is to rearrange them into a sentence 

and say whether it is true or false.  

Example: (i) Sword pen is then mightier. (True, False) 

                   (ii) Is America a socialist country.(true, false) 

(v)Coding  



A sentence is given. The subject is to rewrite it on the basis of a given 

code. 

Example: Code the following message by first reversing each word and then    

                    substituting each letter by the next- “Send reinforcements at once”. 

(vi)Number series  

A series of numbers is given and the subject is to supply the next or the 

next two. 

Example: (i) Supply the next two terms-.   

 (a)  1, 3, 7, 13, ….,…..,… . 

                        (b)   81, 27,9, 3….,….,… . 

(vii) Analogies 

Three words, of which the first two are related in some way, are given. 

The subject is to find or select the fourth word which is related to the third as 

the second is to the first. 

Example: Black is to white as intelligent is to ………. .   

                   Man is to woman as god is to ………. .  

(viii) Inferences  

A problem demanding reasoning is given, and the subject is to select or 

supply the solution. 

Example: All men are mortal.    

                   Some men are kind. 

                   All mortals are kind.   (True or false)  

Intelligence tests may be designed for application to individuals or for 

application to groups of individuals. One of the well-known individual tests is 

Binet’s test. The revised version of this test is now being widely used for 



measuring Intelligence of young children and for detecting mental deficiency. 

Group tests were first widely used by the U.S Army authorities for 

recruitment, placement or promotion of personnel. The Alpha test was meant 

for the majority and the Beta test for illiterates or non-English-Speaking 

person. 

Intelligence tests, like other tests, may again be verbal or non-verbal, 

The former demand the intelligent manipulation of ideas expressed in words 

while the letter call for the intelligent  manipulation of objects. 

After constructing an Intelligence test, we must check its reliability and 

validity by one of the methods discussed previously. When we are satisfied 

that the Intelligence test is reliable and valid, we must compute some 

standard or norm which will aid us in assessing any given individual’s score. 

We may compute either the mean and standard deviation or the percentile 

norms, standard scores or T –sores for this purpose. It was in this connection 

that Binet introduced the concept of mental age. An individual’s mental age 

(MA) is the age at which an average person can pass the tests that the 

individual passes. A numbers of intelligent tests so constructed are to be 

applied to large numbers of children of different ages. Then one has to find at 

what age last birth day each test is passed by 50% of the children of that age. 

Thus for each age a number of intelligence tests, say 5, are fixed. If a subject 

can answer correctly all the tests for age 9, 80% of age 10, 40% of age 11 and 

20% of age 12, his mental age would be 9+.80+40+20=10.40. Later, mental 

ratio (MR) was defined as 

  𝑚𝑒𝑡𝑎𝑙 𝑟𝑎𝑡𝑖𝑜 =
𝑚𝑒𝑛𝑡𝑎𝑙 𝑎𝑔𝑒

𝑐ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑎𝑔𝑒
                                                    …(34) 

 Thus, if a boy of 10 years possesses an MA of 10.40 years, then his MR is 

1.04. He is thus an advanced child, his MR being more than 1.  A child will be 

regarded as retarded if his MR is less than I, and he is of average intelligence if 

his MR equals I. 

 The intelligence quotient, or IQ,has now replaced the MR. IQ is defined as 



𝐼𝑄 = 100 X 
𝑀𝐴

𝐶𝐴
 

                                                                   = 100 X 𝑀𝑅                                            …(35)                                                                                                                                                                                                                                       

We now make some observations concerning the interpretation of IQ in 

its classical from. The IQ will be 100(lower than100/greater than 100) for all 

children who have the same (a lower/a higher) level of intellectual 

development as (than) the average child of the same age. It is necessary that 

the standard deviations of the IQ distribution of all age groups be 

approximately the same for the same IQ to have the same relative position on 

the distribution for different ages. This is essential for a proper interpretation 

of an individual IQ. But as this is not fulfilled in many cases, the present trend 

in standard tests is that the test is standardized and normalized into a set of 

normalized scores (called IQ –equivalents) for each age with mean 100 and 

standard deviation 15. Thus it is immaterial whether we use a T -scale or an 

IQ–equivalent scale for the norm. 

The use of intelligence tests has shown that intelligence may be 

supposed to be normally distributed and that it depends on heredity. It has 

also been found that intelligence grows with age, which continues up to age 16 

or 17, and then it remains steady. There is no evidence that intelligence and 

sex are related. It has also been found that different occupations require 

intelligence to varying degrees. 

Intelligence tests have found many uses. They are used for vocational 

guidance and selection, in the grading of pupils and in diagnosing mental 

deficiency. Thus an intelligence test, properly constructed and standardized, is 

of immense use for various purposes. 

 

ELEMENTS OF FACTOR ANALYSIS 

Factor analysis is that branch of statistical methods which is concerned 

with the resolution of a set of variables X1, X2,………..X𝑛 in terms of a smaller 

number of factors F1, F2…………. Fm, where 𝑚 < 𝑛 so that the purpose in views 



is not vitiated. The resolution is effected by the analysis of inter-correlations 

of the variables. The satisfactory solution is to use factors which convey all the 

important and essential information of the original set of variables and the 

emphasis is on economy of description. Factor analysis has its principal 

application in psychological measurements, where the variables X1, X2,.……..X𝑛 

are the test scores on 𝑛 score of a battery and F1, F2,………….,Fm are 𝑚 mental 

abilities measured by the tests.  

The simplest mathematical expression for describing a set of variables 

in terms of several others is a linear one. In factor analysis also, a linear form 

is taken to represent a variable X𝑗 in terms of a number of underlying factors 

which are taken in the standardized form (𝑖. 𝑒., with zero means and unit 

𝑠. 𝑑. ′′′′′′′′′′′′′′𝑠). Several types of factors are employed. Common factors are 

those which occur in more than one variable. Common factors are of two 

types - (1) general factor, which is common to all the variables and (2) group 

factors, which are present in several, but not in all, variables. A factor which 

appears in the description of a single variable is called unique. Unique factors 

are of two types – (1) specific factors, having a simple interpretation and 

liable to be identified, and (2) unreliable or error factors, which are unreliable 

and not identifiable. Thus we have 

 𝑋𝑗 = 𝑎𝑗1𝐹1 + 𝑎𝑗2𝐹2 +⋯+ 𝑎𝑗𝑚𝐹𝑚 + 𝑏𝑗𝑆𝑗 + 𝑐𝑗𝐸𝐽,        𝑗 = 1,2… . 𝑛,              …(36) 

F1, F2, …………., Fm being the common factors 𝑆𝑗 the specific factor and 𝐸𝑗, the 

error or unreliability. 

           ℎ𝑗
2 = ∑ 𝑎𝑗

2𝑘𝑚
𝑘=1   is called the communality of the variable 𝑋𝑗, which is  

the part of the total variance attributable to common factors, whereas 𝑏𝑗
2 and 

𝑐𝑗
2 are called the specificity and unreliability of the variable, 𝑏𝑗

2 + 𝑐𝑗
2 being 

called its uniqueness.  ℎ𝑗
2 + 𝑏𝑗

2 may be termed as the reliability of the 

variable, and 𝑎𝑗1,𝑎𝑗2,………,𝑎𝑗𝑚, are the factor loadings of the 𝑚 common 

factors for the variable 𝑋𝑗 . The basic problem of factor analysis is to determine 

the factor loadings. When the factor loadings are determined one can evaluate 

the factors in terms of the variables. 



Let us designate 

                   𝑋𝑗 = 𝑎𝑖1𝐹1 + 𝑎𝑗2𝐹2 +⋯+ 𝑎𝑗𝑚𝐹𝑚 + 𝑎𝑗𝑈𝑗,     𝑗 = 1,2… . . 𝑛,         …(37) 

𝑈𝑗 Being the uniqueness, as the factor pattern and  

                         𝑟𝑋𝑗𝐹𝑘 = 𝑎𝑗1𝑟𝐹𝑘𝐹1 + 𝑎𝑗2𝑟𝐹𝑘𝐹2 +⋯+ 𝑎𝑗𝑘 +⋯+ 𝑎𝑗𝑚𝑟𝐹𝑘𝐹𝑚 

                         𝑟𝑥𝑗𝑈𝑗 = 𝑎𝑗                                                                                             ...(38) 

as the factor structure 

If we have 𝑁 individuals for whom the values of the variable 𝑋𝑗  are 

known, say 𝑋𝑗1, 𝑋𝑗2,……., 𝑋𝑗𝑁 ,let  

𝑋 = (

𝑋11   𝑋12……𝑋1𝑁
𝑋21   𝑋22……𝑋2𝑁
…     …    ……  …
𝑋𝑛1   𝑋𝑛2……𝑋𝑛𝑁

) 

                                                   𝐹 =

(

 
 
 
 
 

𝐹11 𝐹12…… 𝐹1𝑁
𝐹21 𝐹22…… 𝐹2𝑁
… …   …… …
𝐹𝑚1 𝐹𝑚2…… 𝐹𝑚𝑁
𝑈11 𝑈12…… 𝑈1𝑁
…  …   …… …
𝑈21    𝑈22……     𝑈2𝑁
𝑈𝑛1    𝑈𝑛2……     𝑈𝑛𝑁)

 
 
 
 
 

 

And                                          𝑀 = (

𝑎11    𝑎12……  𝑎1𝑚     𝑎1     𝑂      𝑂 ……𝑂
𝑎21    𝑎22…… . 𝑎2𝑚     𝑂      𝑎2    𝑂 ……𝑂
 …    …   ……  …    …       …      …  …… …
𝑎𝑛1    𝑎𝑛2…… . 𝑎𝑛𝑚    𝑂      𝑂     𝑂 ……𝑎𝑛

)    

Then                                                  𝑋 = 𝑀𝐹. 

Now                                               
1

𝑁
𝑋𝑋 = (

1 𝑟12…… 𝑟1𝑛
𝑟21 1…… . 𝑟2𝑛
… ……… …
 𝑟𝑛1    𝑟𝑛2……    𝑟𝑛𝑛

) = 𝑅, 

the correlation matrix 



Thus                                                 𝑅 =
1

𝑁
𝑋𝑋′ 

        =
1

𝑁
(𝑀𝐹)(𝐹′𝑀′) 

                                                                = 𝑀(
1

𝑁
𝐹𝐹′)𝑀′ 

But if the factors are all orthogonal, 

𝑅 = 𝑀𝑀′. 

Thus, if we regard the correlation matrix R as the available data and the 

factor pattern matrix M as the desired objective in a factor analysis, we have 
𝑛(𝑛−1)

2
 experimentally given coefficients which must exceed the number of 

linearly independents coefficients in M. It will be seen that by limiting 

ourselves to common factors, the factor problem becomes determinate even 

though we admit the existence of unique factors.  

Now with the assumption of a particular factor pattern and the 

assumption of orthogonality of factors, we can calculate the coefficients 

𝑟̂𝑗𝑘 =∑𝑎𝑗𝑖𝑎𝑘𝑖

𝑚

𝑖=1

 

and compare them with the observed correlation coefficients to see how far 

the assumed factor pattern explains the observed correlation coefficients. 

When the factor loadings are determined, estimation of any common factor 𝐹𝑠 

(or an unique factor 𝑈𝑠) involves the determination of the regression function 

                                                𝐹̂𝑠 = 𝛽𝑠1𝑋1 + 𝛽𝑠2𝑋2 +⋯+ 𝛽𝑠𝑛𝑋𝑛. 

The normal equations will be  

𝛽𝑠1 + 𝑟12𝛽𝑠2 +⋯+ 𝑟1𝑛𝛽𝑠𝑛 = 𝑡1𝑠, 

    𝑟21𝛽𝑠1 + 𝛽𝑠2 +⋯𝑟2𝑛𝛽𝑠𝑛 = 𝑡2𝑠 

𝑟𝑛1𝛽𝑠1 + 𝑟𝑛1𝛽𝑠2 +⋯𝛽𝑠𝑛 = 𝑡𝑛𝑠, 



where                                                                            𝑡𝑗𝑠 = 𝑟𝑋𝑗𝐹𝑠 

The solution is  

𝛽̂𝑠𝑗 =
1

𝑅
[𝑡1𝑠𝑅1𝑗 + 𝑡2𝑠𝑅2𝑗 +⋯𝑡𝑛𝑠𝑅𝑛𝑗], 

    where 𝑅𝑖𝑗 is the cofactor of 𝑟𝑖𝑗  in the determinant    

      R=[R]. 

Thus                                 𝛽̂𝑠
′ = 𝑡𝑠

′𝑅−1 

so that                              𝐹̂𝑠 = 𝑡𝑠
′𝑅−1(𝑋1, 𝑋2, …… . . , 𝑋𝑛) ’ 

Combining for all factors, common and unique, we have  

                                           𝐹 = 𝑆′𝑅−1𝑋,                                                                  …(39) 

where                                𝑆 = (

𝑡11 𝑡12 𝑡1𝑚   𝑎1  𝑂…… . 𝑂
𝑡21 𝑡22 𝑡2𝑚   𝑂  𝑎2……  𝑂
… … …  …  …  …  …  …  
𝑡𝑛1   𝑡𝑛2    𝑡𝑛𝑚    𝑂    𝑂……  𝑎𝑛

) 

In case the factors are orthogonal,  

 𝑟𝑋𝑗𝐹𝑘 = 𝑡𝑗𝑘 = 𝑎𝑗𝑘  

and the factor structure coincides with the loading matrix M. 

Where                                      𝑀 = (

𝑎11 𝑎12 𝑎1𝑚   𝑎1    𝑂 …… .𝑂
𝑎21 𝑎22 𝑎2𝑚    𝑂     𝑎2……𝑂
… … …     …     … …… …
𝑎𝑛1    𝑎𝑛2    𝑎𝑛𝑚    𝑂     𝑂 ……𝑎𝑛

)   

We have                                   𝐹̂ = 𝑀′𝑅−1𝑋                                                            …(40)                                                                                            

In actual applications, the orthogonal factors are estimated conveniently by 

the method of pivotal condensation.  

 

  


