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Techniques 1n which some physical parameters of the
system are determined and recorded as a function of

temperature.

These methods find wide use for quality control and
research applications on industrial products, such as
polymers, pharmaceuticals, clays and minerals, Metals

and alloys.




Some Thermal Analysis Techniques
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THERMOGRAVIMETRY
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The thermal stability is the ability of the substance to maintain its
property as nearly unchanged even on heating.



DERIVATIVE THERMOGRAVIMETRY
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SOME FACTORS AFFECTING THERMOGRAVIMETRIC CURVES

1. Instrumental (thermobalance) factors
a. Furnace heating rate
b. Recording or chart speed
c. Furnace Atmosphere
d. Geometry of sample holder and furnace
¢. Sensitivity of recording mechanism

f. Composition of sample container



SOME FACTORS AFFECTING THERMOGRAVIMETRIC CURVES

2. Sample Characteristics
a. Amount of sample
b. Solubility of evolved gases in sample
c. Particle size
d. Heat of reaction
e. Sample packing
f. Nature of the sample

g. Thermal conductivity



a. Furnace Heating Rate

For itial procedural decomposition temperature, 7::
(T)r> (T)s
For final procedural temperatures, 7

(T)r> (T)s

Reaction interval, T,—T.

(T, =T )p> (I;-T; )s



Weight loss, mg
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Slower heating =
better resolution

Usually,
Higher heating rate =
shift to higher temperature
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Influence of the heating rate on the resolution of partial reactions, in the inserted
diagram on the right, the dotted and solid curves of copper sulphate pentahydrate
were measured conventionally at 5 and 25 K/min, whereas the dashed curve was
recorded using sample controlled heating rate. In this presentation of mass
against temperature, the steps in the curve appear to be nearly vertical because,
at low heating rates, the reaction takes place almost isothermally. In contrast, in
the mass against time presentation (main diagram), the shapes of the three curves
at first appear similar. On closer inspection, the better separation obtained using
sample controlled heating rates — especially in the first two steps — becomes
apparent.

Sample controlled TG: A quite different approach for separating overlapping
reactions makes use of rate of change in sample weight to automatically control
the heating rate: the faster the change in mass, the slower the heating rate.



Effect of heating rate
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10 mg samples of PTFE, heated at 2.5, 5, 10 and 20 “C/min in nitrogen
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b. Recording / Chart Speed

The chart speed of the TG curves for rapid or slow reactions can have
pronounced effect on the shape of the curves.

Low Chart Speed High Chart Speed
There is definite Flattening of the curve
as the chart speed is increased for a slow

‘\:Sow R eaction
thermal decomposition reaction.

PQs5YTo oo 3

Slow Reaction In case of slow reaction followed by a rapid
one, the lower chart speed curve shows
—rapid reaction

less separation of the two steps.

PQsVTO OO 3

For a fast reaction followed by a slower one,
an effect similar to that of curve (b) was
Slow Reaction Observed.

— fastreaction

Temp —



c. Effect of furnace atmosphere :-

The effect of furnace atmosphere depends upon:
1) Type of reaction.

i1) The nature of decomposition products.

i11) The type of atmosphere employed.

Normally function of the atmosphere is to remove the gaseous
products evolved during the reaction.

Common atmospheres used are:-

a) Static air i.e. air from the surrounding flows through the furnace.

b) Dynamic air i.e. compressed air from the cylinder flows through
the furnace with definite flow rate.

c) Ar-gas/ O, free N,-gas is used as inert atmosphere
Nitrogen or Argon are usually used to purge the furnace and
prevent oxidation of the sample.
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CaCO,

CaC,0,.H,0 (s) = CaC,0,(s) +H,0 (g)
CaC,0,(s) & CaCO4(s) + CO (g) (in N,)
CaC,0,(s) + ¥ O,(g) = CaCOs(s) + COy(g) (in O,)
CaCO;(s) = CaO + CO,(g)

Solid line: N, ; dashed line: O,



I ! I I I I I I I
CaC0, == Ca0 + CO,}

Sample mass: 10 mg
Heating rate: 10°C/min
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Fast and reversible dehydration in air
and hydrogen.

Slower dehydration in nitrogen.

Dehydration and decomposition is
slow but occurs at lower
temperatures

MgC,0, — MgO + CO + CO,

Fast decomposition in hydrogen and
air due to following reactions:

in H,: CO +CO,+7H,
—»2CH,+3H,0

in 0,; CO + CO, + 1/2 H,0
5200,



d. Geometry of the Sample Holders :
The geometry of the sample holder can change

the shape of TG curve.

Sample Holders may be range from flat plates to
deep crucibles of various capacities.

Materials used 1n their construction may vary
from glass, alumina, ceramics, various metals
and Metallic alloys.

Generally shallow disc is preferred to cone shape
crucible because there 1s rapid gas exchange
between sample and surrounding atmosphere



Differential Thermal Analysis

It 1s the technique in which the difference in temperature
between a substance and a reference material 1s measured as
a function of temperature while the substance and reference
material are subjected to a controlled temperature program.
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Schematic representation of a DTA or DSC instrument




Measure temperature
difference between sample
and reference while they are
being heated.

DSC
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Measure difference in heat
flow to sample and reference
while they are being heated.



Separate sample and reference temperature
semsors and furnaces
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Sample and rut‘c{nw thermocouples Singlf furnace
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(a) Power-compensation differential scanning calorimeter. (b) Heat flux differen-
tial scanning calorimeter



Reference Materials

Reference should have same physical properties as sample
Reference should not have any transformations during heating
Reference for sample which looses weight?

Commonly used, SiC, Al,O5, empty crucible



Heat flow

S0 100 150 200 250 300
Temperature/*C

Thermal analysis curve for polylethylene terephthalate)

65°C: glass transition temp.; Onset at 110°C: Crystallization: Onset at 255 °C melting



Heat flow
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Melting endotherms for benzoic acid: (a) 99.9, (b) 99 and (c) 97 mol% purity
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Schematic representation of a thermal analysis curve



Materials studied by DTA/DSC

Polymers, glasses and ceramics Pharmaceuticals
Oils, fats and waxes Biological materials
Clays and Minerals Metals and alloys
Coal. lignite and wood Natural products
Liquid crystals Catalysts

Explosives, propellants and pyrotechnics
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Thermal analysis curve for high alumina cement



TG effect DTA/DSC effect

Process Gain Loss Exotherm Endotherm

Adsorption v v
Desorption
Dehydration/desolvation
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Vaporisation
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Solid-solid transition

Solid -gas reaction v
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TG und DTA curves for the reduction of a YBa,Cu,0, superconductor. 30 mg
sample, 15°C min~*, 5% H, in N,
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Determination of an accurate value for the Curie point of
Nickel using simultaneous TG-DTA in a magnetic field.
327 °C: melting endotherm of lead;

419 °C: melting endotherm of zinc Curie point transition is
seen only on the TG.
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STA of sodium tungstate dihydrate.
Typical conditions: 10 K/min, nitrogen at 100 cm?/min, 10 mg powdered sample



Thermal analysis curve of tin(Il) formate:

(1) A loss of about 35% near 200 °C
(i1) A gain in mass starting near 600 °C



10 K/min, air

STA of wood sample: Stages of combustion of cellulose have been identified
Dehydration and decomposition to laevoglucosan, followed and accompanied
by production of flammable volatiles, tars, carbon and gases such as water

vapour and oxides of carbon.
Dashed curve: treatment of the materials with fire retardants such as borates,

phosphates, or Al salts.



Residue of around 10 % in air
comes from mineral additives;
In nitrogen due to uncombusted
material and fillers such as
carbon black

STA of poly(vinyl chloride) sample; 20 mg sample, 5 K/min,
Air (full line) or nitrogen (dashed line) at 60 cm?/ min.

Glass transition at around 80 °C, dehydrochlorination reaction
at around 270 °C (weak endotherm).

Loss of volatiles i1s very exothermic in air but less so in nitrogen
Small peaks due to fillers, fire retardants etc.
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STA of pharmaceutical compound (22.6 mg, 10 K/min, nitrogen at 50 cm?/min)
Stages: Loss of water from hydrated pharmaceutical, followed by the melting
of anhydrous material at about 170 °C without decompostion.



EVOLVED GAS ANALYSIS

1. Physical methods: conductivity, density
2. Chemical methods: reaction, colour indication, electrochemical
3. Spectroscopic methods: mass spectrometry, IR spectroscopy
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First the nitrocellulose decomposes around 2000°C, leaving a carbon
rich residue of onlv ca. 10% of the wetght of nitrocellulose. Following the
sharp orthorhombic cubic phase transition in potassium perchlorate at
A00°C, an exothermic reaction takes place between the xirconium and
perchlorate while, at the same time, the carbon residue 15 oxidised by the
perchlorate, as shown by the COy curve, The persistence of COy eval-
ution up 4o ca 600°C 15 a real and repeatable phenomenon, and remains
unexplained. Oxygen evolution from excess perchloraie starts around
400°C, where it is more sensitively detected by the M3 than the TG curve.
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TG-DTA-MS curves for calcium oxalate monohydrate
(15 mg, 15 K/min, argon)
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TG-MS curves for poly(ethylene oxide) M,, = 5 x 10°, from two suppliers
(10 K/min, gas flow 100 cm?/min)

Top curves show the TG under air (full line) or nitrogen (dashed line) and
The lower curves the mass spectral response curves.

m/z =73 (probably a C;H;O, species) and m/z = 88 (p-dioxane, C,H;O,)
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TG-MS curves for an Oxford clay* (40 mg, 20 K/min, air)
*Used 1n the manufacture of common bricks
m/z = 18 (H,0); m/z = 44 (CO,); m/z = 64 (SO,)
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Schematic of a thermal analysis-infrared system
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(d) Spectrum of HCI
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TG-FTIR trace for PVC/PVAc copolymer (blend of copolymer of vinyl
Chloride and vinyl acetate): shows evolution of HCI, ethanoic acid when
Heated in nitrogen and production of CO, due to combustion in air at high

temperatures



— B
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