
UNIT-III 

Software Design Principles 

Software design principles are concerned with providing means to handle the complexity 

of the design process effectively. Effectively managing the complexity will not only reduce 

the effort needed for design but can also reduce the scope of introducing errors during 

design. 

Following are the principles of Software Design 

 

Problem Partitioning 

For small problem, we can handle the entire problem at once but for the significant 

problem, divide the problems and conquer the problem it means to divide the problem 

into smaller pieces so that each piece can be captured separately. 

For software design, the goal is to divide the problem into manageable pieces. 

Benefits of Problem Partitioning 

1. Software is easy to understand 

2. Software becomes simple 

3. Software is easy to test 

4. Software is easy to modify 

5. Software is easy to maintain 

6. Software is easy to expand 



These pieces cannot be entirely independent of each other as they together form the 

system. They have to cooperate and communicate to solve the problem. This 

communication adds complexity. 

Note: As the number of partition increases = Cost of partition and complexity 

increases 

 

Abstraction 

An abstraction is a tool that enables a designer to consider a component at an abstract 

level without bothering about the internal details of the implementation. Abstraction can 

be used for existing element as well as the component being designed. 

Here, there are two common abstraction mechanisms 

1. Functional Abstraction 

2. Data Abstraction 

Functional Abstraction 

i. A module is specified by the method it performs. 

ii. The details of the algorithm to accomplish the functions are not visible to the user 

of the function. 

Functional abstraction forms the basis for Function oriented design approaches. 

Data Abstraction 

Details of the data elements are not visible to the users of data. Data Abstraction forms 

the basis for Object Oriented design approaches. 

 

Modularity 

Modularity specifies to the division of software into separate modules which are differently 

named and addressed and are integrated later on in to obtain the completely functional 

software. It is the only property that allows a program to be intellectually manageable. 

Single large programs are difficult to understand and read due to a large number of 

reference variables, control paths, global variables, etc. 

The desirable properties of a modular system are: 

o Each module is a well-defined system that can be used with other applications. 

o Each module has single specified objectives. 

o Modules can be separately compiled and saved in the library. 



o Modules should be easier to use than to build. 

o Modules are simpler from outside than inside. 

Advantages and Disadvantages of Modularity 

In this topic, we will discuss various advantage and disadvantage of Modularity. 

 

Advantages of Modularity 

There are several advantages of Modularity 

o It allows large programs to be written by several or different people 

o It encourages the creation of commonly used routines to be placed in the library 

and used by other programs. 

o It simplifies the overlay procedure of loading a large program into main storage. 

o It provides more checkpoints to measure progress. 

o It provides a framework for complete testing, more accessible to test 

o It produced the well designed and more readable program. 

Disadvantages of Modularity 

There are several disadvantages of Modularity 

o Execution time maybe, but not certainly, longer 

o Storage size perhaps, but is not certainly, increased 

o Compilation and loading time may be longer 

o Inter-module communication problems may be increased 

o More linkage required, run-time may be longer, more source lines must be written, 

and more documentation has to be done 



Modular Design 

Modular design reduces the design complexity and results in easier and faster 

implementation by allowing parallel development of various parts of a system. We discuss 

a different section of modular design in detail in this section: 

1. Functional Independence: Functional independence is achieved by developing 

functions that perform only one kind of task and do not excessively interact with other 

modules. Independence is important because it makes implementation more accessible 

and faster. The independent modules are easier to maintain, test, and reduce error 

propagation and can be reused in other programs as well. Thus, functional independence 

is a good design feature which ensures software quality. 

It is measured using two criteria: 

o Cohesion: It measures the relative function strength of a module. 

o Coupling: It measures the relative interdependence among modules. 

2. Information hiding: The fundamental of Information hiding suggests that modules 

can be characterized by the design decisions that protect from the others, i.e., In other 

words, modules should be specified that data include within a module is inaccessible to 

other modules that do not need for such information. 

The use of information hiding as design criteria for modular system provides the most 

significant benefits when modifications are required during testing's and later during 

software maintenance. This is because as most data and procedures are hidden from other 

parts of the software, inadvertent errors introduced during modifications are less likely to 

propagate to different locations within the software. 

 

Strategy of Design 

A good system design strategy is to organize the program modules in such a method that 

are easy to develop and latter too, change. Structured design methods help developers to 

deal with the size and complexity of programs. Analysts generate instructions for the 

developers about how code should be composed and how pieces of code should fit together 

to form a program. 

To design a system, there are two possible approaches: 

1. Top-down Approach 

2. Bottom-up Approach 

1. Top-down Approach: This approach starts with the identification of the main 

components and then decomposing them into their more detailed sub-components. 



 

2. Bottom-up Approach: A bottom-up approach begins with the lower details and moves 

towards up the hierarchy, as shown in fig. This approach is suitable in case of an existing 

system. 

 

 

Coupling and Cohesion 

Module Coupling 

In software engineering, the coupling is the degree of interdependence between software 

modules. Two modules that are tightly coupled are strongly dependent on each other. 

However, two modules that are loosely coupled are not dependent on each 

other. Uncoupled modules have no interdependence at all within them. 

The various types of coupling techniques are shown in fig: 



 

A good design is the one that has low coupling. Coupling is measured by the number of 

relations between the modules. That is, the coupling increases as the number of calls 

between modules increase or the amount of shared data is large. Thus, it can be said that 

a design with high coupling will have more errors. 

Types of Module Coupling 

 

1. No Direct Coupling: There is no direct coupling between M1 and M2. 



 

In this case, modules are subordinates to different modules. Therefore, no direct coupling. 

2. Data Coupling: When data of one module is passed to another module, this is called 

data coupling. 

 

3. Stamp Coupling: Two modules are stamp coupled if they communicate using 

composite data items such as structure, objects, etc. When the module passes non-global 

data structure or entire structure to another module, they are said to be stamp coupled. 

For example, passing structure variable in C or object in C++ language to a module. 

4. Control Coupling: Control Coupling exists among two modules if data from one module 

is used to direct the structure of instruction execution in another. 

5. External Coupling: External Coupling arises when two modules share an externally 

imposed data format, communication protocols, or device interface. This is related to 

communication to external tools and devices. 

6. Common Coupling: Two modules are common coupled if they share information 

through some global data items. 



 

7. Content Coupling: Content Coupling exists among two modules if they share code, 

e.g., a branch from one module into another module. 

 

Module Cohesion 

In computer programming, cohesion defines to the degree to which the elements of a 

module belong together. Thus, cohesion measures the strength of relationships between 

pieces of functionality within a given module. For example, in highly cohesive systems, 

functionality is strongly related. 

Cohesion is an ordinal type of measurement and is generally described as "high cohesion" 

or "low cohesion." 

 



Types of Modules Cohesion 

 

1. Functional Cohesion: Functional Cohesion is said to exist if the different elements 

of a module, cooperate to achieve a single function. 

2. Sequential Cohesion: A module is said to possess sequential cohesion if the 

element of a module form the components of the sequence, where the output from 

one component of the sequence is input to the next. 

3. Communicational Cohesion: A module is said to have communicational 

cohesion, if all tasks of the module refer to or update the same data structure, e.g., 

the set of functions defined on an array or a stack. 

4. Procedural Cohesion: A module is said to be procedural cohesion if the set of 

purpose of the module are all parts of a procedure in which particular sequence of 

steps has to be carried out for achieving a goal, e.g., the algorithm for decoding a 

message. 

5. Temporal Cohesion: When a module includes functions that are associated by the 

fact that all the methods must be executed in the same time, the module is said to 

exhibit temporal cohesion. 



6. Logical Cohesion: A module is said to be logically cohesive if all the elements of 

the module perform a similar operation. For example Error handling, data input and 

data output, etc. 

7. Coincidental Cohesion: A module is said to have coincidental cohesion if it 

performs a set of tasks that are associated with each other very loosely, if at all. 

 

Differentiate between Coupling and Cohesion 

Coupling Cohesion 

Coupling is also called Inter-Module 

Binding. 

Cohesion is also called Intra-Module Binding. 

Coupling shows the relationships 

between modules. 

Cohesion shows the relationship within the 

module. 

Coupling shows the 

relative independence between the 

modules. 

Cohesion shows the module's 

relative functional strength. 

While creating, you should aim for low 

coupling, i.e., dependency among 

modules should be less. 

While creating you should aim for high 

cohesion, i.e., a cohesive component/ module 

focuses on a single function (i.e., single-

mindedness) with little interaction with other 

modules of the system. 

In coupling, modules are linked to the 

other modules. 

In cohesion, the module focuses on a single 

thing. 

 

Function Oriented Design 

Function Oriented design is a method to software design where the model is decomposed 

into a set of interacting units or modules where each unit or module has a clearly defined 

function. Thus, the system is designed from a functional viewpoint. 

Design Notations 



Design Notations are primarily meant to be used during the process of design and are used 

to represent design or design decisions. For a function-oriented design, the design can be 

represented graphically or mathematically by the following: 

 

Data Flow Diagram 

Data-flow design is concerned with designing a series of functional transformations that 

convert system inputs into the required outputs. The design is described as data-flow 

diagrams. These diagrams show how data flows through a system and how the output is 

derived from the input through a series of functional transformations. 

Data-flow diagrams are a useful and intuitive way of describing a system. They are 

generally understandable without specialized training, notably if control information is 

excluded. They show end-to-end processing. That is the flow of processing from when data 

enters the system to where it leaves the system can be traced. 

Data-flow design is an integral part of several design methods, and most CASE tools 

support data-flow diagram creation. Different ways may use different icons to represent 

data-flow diagram entities, but their meanings are similar. 

The notation which is used is based on the following symbols: 



 

 

The report generator produces a report which describes all of the named entities in a data-

flow diagram. The user inputs the name of the design represented by the diagram. The 

report generator then finds all the names used in the data-flow diagram. It looks up a data 

dictionary and retrieves information about each name. This is then collated into a report 

which is output by the system. 



Data Dictionaries 

A data dictionary lists all data elements appearing in the DFD model of a system. The data 

items listed contain all data flows and the contents of all data stores looking on the DFDs 

in the DFD model of a system. 

A data dictionary lists the objective of all data items and the definition of all composite 

data elements in terms of their component data items. For example, a data dictionary 

entry may contain that the data grossPay consists of the 

parts regularPay and overtimePay. 

                  grossPay = regularPay + overtimePay 

For the smallest units of data elements, the data dictionary lists their name and their type. 

A data dictionary plays a significant role in any software development process because of 

the following reasons: 

o A Data dictionary provides a standard language for all relevant information for use 

by engineers working in a project. A consistent vocabulary for data items is 

essential since, in large projects, different engineers of the project tend to use 

different terms to refer to the same data, which unnecessarily causes confusion. 

o The data dictionary provides the analyst with a means to determine the definition 

of various data structures in terms of their component elements. 

Structured Charts 

It partitions a system into block boxes. A Black box system that functionality is known to 

the user without the knowledge of internal design. 

 

Structured Chart is a graphical representation which shows: 



o System partitions into modules 

o Hierarchy of component modules 

o The relation between processing modules 

o Interaction between modules 

o Information passed between modules 

The following notations are used in structured chart: 

 

Pseudo-code 

Pseudo-code notations can be used in both the preliminary and detailed design phases. 

Using pseudo-code, the designer describes system characteristics using short, concise, 

English Language phases that are structured by keywords such as If-Then-Else, While-Do, 

and End. 

Coding 

The coding is the process of transforming the design of a system into a computer language 

format. This coding phase of software development is concerned with software translating 

design specification into the source code. It is necessary to write source code & internal 

documentation so that conformance of the code to its specification can be easily verified. 

Coding is done by the coder or programmers who are independent people than the 

designer. The goal is not to reduce the effort and cost of the coding phase, but to cut to 

the cost of a later stage. The cost of testing and maintenance can be significantly reduced 

with efficient coding. 



Goals of Coding 

1. To translate the design of system into a computer language format: The 

coding is the process of transforming the design of a system into a computer 

language format, which can be executed by a computer and that perform tasks as 

specified by the design of operation during the design phase. 

2. To reduce the cost of later phases: The cost of testing and maintenance can be 

significantly reduced with efficient coding. 

3. Making the program more readable: Program should be easy to read and 

understand. It increases code understanding having readability and 

understandability as a clear objective of the coding activity can itself help in 

producing more maintainable software. 

For implementing our design into code, we require a high-level functional language. A 

programming language should have the following characteristics: 

Characteristics of Programming Language 

Following are the characteristics of Programming Language: 

 

Readability: A good high-level language will allow programs to be written in some 

methods that resemble a quite-English description of the underlying functions. The coding 

may be done in an essentially self-documenting way. 



Portability: High-level languages, being virtually machine-independent, should be easy 

to develop portable software. 

Generality: Most high-level languages allow the writing of a vast collection of programs, 

thus relieving the programmer of the need to develop into an expert in many diverse 

languages. 

Brevity: Language should have the ability to implement the algorithm with less amount 

of code. Programs mean in high-level languages are often significantly shorter than their 

low-level equivalents. 

Error checking: A programmer is likely to make many errors in the development of a 

computer program. Many high-level languages invoke a lot of bugs checking both at 

compile-time and run-time. 

Cost: The ultimate cost of a programming language is a task of many of its characteristics. 

Quick translation: It should permit quick translation. 

Efficiency: It should authorize the creation of an efficient object code. 

Modularity: It is desirable that programs can be developed in the language as several 

separately compiled modules, with the appropriate structure for ensuring self-consistency 

among these modules. 

Widely available: Language should be widely available, and it should be feasible to 

provide translators for all the major machines and all the primary operating systems. 

A coding standard lists several rules to be followed during coding, such as the way 

variables are to be named, the way the code is to be laid out, error return conventions, 

etc. 

Coding Standards 

General coding standards refers to how the developer writes code, so here we will discuss 

some essential standards regardless of the programming language being used. 

The following are some representative coding standards: 



 

1. Indentation: Proper and consistent indentation is essential in producing easy to 

read and maintainable programs. 

Indentation should be used to: 

o Emphasize the body of a control structure such as a loop or a select 

statement. 

o Emphasize the body of a conditional statement 

o Emphasize a new scope block 

2. Inline comments: Inline comments analyze the functioning of the subroutine, or 

key aspects of the algorithm shall be frequently used. 

3. Rules for limiting the use of global: These rules file what types of data can be 

declared global and what cannot. 

4. Structured Programming: Structured (or Modular) Programming methods shall 

be used. "GOTO" statements shall not be used as they lead to "spaghetti" code, 

which is hard to read and maintain, except as outlined line in the FORTRAN 

Standards and Guidelines. 

5. Naming conventions for global variables, local variables, and constant 

identifiers: A possible naming convention can be that global variable names 

always begin with a capital letter, local variable names are made of small letters, 

and constant names are always capital letters. 

6. Error return conventions and exception handling system: Different functions 

in a program report the way error conditions are handled should be standard within 

an organization. For example, different tasks while encountering an error condition 

should either return a 0 or 1 consistently. 



Coding Guidelines 

General coding guidelines provide the programmer with a set of the best methods which 

can be used to make programs more comfortable to read and maintain. Most of the 

examples use the C language syntax, but the guidelines can be tested to all languages. 

The following are some representative coding guidelines recommended by many software 

development organizations. 

 

1. Line Length: It is considered a good practice to keep the length of source code lines 

at or below 80 characters. Lines longer than this may not be visible properly on some 

terminals and tools. Some printers will truncate lines longer than 80 columns. 

2. Spacing: The appropriate use of spaces within a line of code can improve readability. 

Example: 

Bad:        cost=price+(price*sales_tax) 

                fprintf(stdout ,"The total cost is %5.2f\n",cost); 

Better:      cost = price + ( price * sales_tax ) 

                  fprintf (stdout,"The total cost is %5.2f\n",cost); 

3. The code should be well-documented: As a rule of thumb, there must be at least 

one comment line on the average for every three-source line. 

4. The length of any function should not exceed 10 source lines: A very lengthy 

function is generally very difficult to understand as it possibly carries out many various 



functions. For the same reason, lengthy functions are possible to have a disproportionately 

larger number of bugs. 

5. Do not use goto statements: Use of goto statements makes a program unstructured 

and very tough to understand. 

6. Inline Comments: Inline comments promote readability. 

7. Error Messages: Error handling is an essential aspect of computer programming. This 

does not only include adding the necessary logic to test for and handle errors but also 

involves making error messages meaningful. 

Programming Style 

Programming style refers to the technique used in writing the source code for a computer 

program. Most programming styles are designed to help programmers quickly read and 

understands the program as well as avoid making errors. (Older programming styles also 

focused on conserving screen space.) A good coding style can overcome the many 

deficiencies of a first programming language, while poor style can defeat the intent of an 

excellent language. 

The goal of good programming style is to provide understandable, straightforward, elegant 

code. The programming style used in a various program may be derived from the coding 

standards or code conventions of a company or other computing organization, as well as 

the preferences of the actual programmer. 

Some general rules or guidelines in respect of programming style: 

 

 



1. Clarity and simplicity of Expression: The programs should be designed in such a 

manner so that the objectives of the program is clear. 

2. Naming: In a program, you are required to name the module, processes, and variable, 

and so on. Care should be taken that the naming style should not be cryptic and non-

representative. 

      For Example: a = 3.14 * r * r 

                              area of circle = 3.14 * radius * radius; 

3. Control Constructs: It is desirable that as much as a possible single entry and single 

exit constructs used. 

4. Information hiding: The information secure in the data structures should be hidden 

from the rest of the system where possible. Information hiding can decrease the coupling 

between modules and make the system more maintainable. 

5. Nesting: Deep nesting of loops and conditions greatly harm the static and dynamic 

behavior of a program. It also becomes difficult to understand the program logic, so it is 

desirable to avoid deep nesting. 

6. User-defined types: Make heavy use of user-defined data types like enum, class, 

structure, and union. These data types make your program code easy to write and easy 

to understand. 

7. Module size: The module size should be uniform. The size of the module should not 

be too big or too small. If the module size is too large, it is not generally functionally 

cohesive. If the module size is too small, it leads to unnecessary overheads. 

8. Module Interface: A module with a complex interface should be carefully examined. 

9. Side-effects: When a module is invoked, it sometimes has a side effect of modifying 

the program state. Such side-effect should be avoided where as possible. 

 

 

What is Software Testing 

 

Software testing is a process of identifying the correctness of a software by considering its 

all attributes (Reliability, Scalability, Portability, Re-usability, Usability) and evaluating the 

execution of software components to find the software bugs or errors or defects. 



Software testing provides an independent view and objective of the software and gives 

surety of fitness of the software. It involves testing of all components under the required 

services to confirm that whether it is satisfying the specified requirements or not. The 

process is also providing the client with information about the quality of the software. 

Testing is mandatory because it will be a dangerous situation if the software fails any of 

time due to lack of testing. So, without testing software cannot be deployed to the end 

user. 

What is Testing 

Testing is a group of techniques to determine the correctness of the application under the 

predefined script but, testing cannot find all the defect of application. The main intent of 

testing is to detect failures of the application so that failures can be discovered and 

corrected. It does not demonstrate that a product functions properly under all conditions 

but only that it is not working in some specific conditions. 

Testing furnishes comparison that compares the behavior and state of software against 

mechanisms because the problem can be recognized by the mechanism. The mechanism 

may include past versions of the same specified product, comparable products, and 

interfaces of expected purpose, relevant standards, or other criteria but not limited up to 

these. 

Testing includes an examination of code and also the execution of code in various 

environments, conditions as well as all the examining aspects of the code. In the current 

scenario of software development, a testing team may be separate from the development 

team so that Information derived from testing can be used to correct the process of 

software development. 

The success of software depends upon acceptance of its targeted audience, easy graphical 

user interface, strong functionality load test, etc. For example, the audience of banking is 

totally different from the audience of a video game. Therefore, when an organization 

develops a software product, it can assess whether the software product will be beneficial 

to its purchasers and other audience. 

Manual Testing 

Manual testing is a software testing process in which test cases are executed manually 

without using any automated tool. All test cases executed by the tester manually according 

to the end user's perspective. It ensures whether the application is working as mentioned 

in the requirement document or not. Test cases are planned and implemented to complete 

almost 100 percent of the software application. Test case reports are also generated 

manually. 

Manual Testing is one of the most fundamental testing processes as it can find both visible 

and hidden defects of the software. The difference between expected output and output, 

given by the software is defined as a defect. The developer fixed the defects and handed 

it to the tester for retesting. 

Manual testing is mandatory for every newly developed software before automated testing. 

This testing requires great efforts and time, but it gives the surety of bug-free software. 

Manual Testing requires knowledge of manual testing techniques but not of any automated 

testing tool. 



Manual testing is essential because one of the software testing fundamentals is "100% 

automation is not possible." 

There are various methods used for manual testing. Each method is used according to its 

testing criteria. Types of manual testing are given below: 

Types of Manual Testing: 

1. Black Box Testing 

2. White Box Testing 

3. Unit Testing 

4. System Testing 

5. Integration Testing 

6. Acceptance Testing 

 

How to perform Manual Testing 

o First, tester examines all documents related to software, to select testing areas. 

o Tester analyses requirement document to cover all requirements stated by the 

customer. 

o Tester develops the test cases according to the requirement document. 

o All test cases are executed manually by using Black box testing and white box 

testing. 

o If bugs occurred then the testing team informs to the development team. 

o Development team fixes bugs and handed software to the testing team for 

retesting. 

Advantages of Manual Testing 

o It does not require programming knowledge while using the Black box method. 

https://www.javatpoint.com/black-box-testing
https://www.javatpoint.com/white-box-testing
https://www.javatpoint.com/unit-testing
https://www.javatpoint.com/system-testing
https://www.javatpoint.com/integration-testing
https://www.javatpoint.com/acceptance-testing


o It is used to test dynamically changing GUI designs. 

o Tester interacts with software as a real user so that they are able to discover 

usability and user interface issues. 

o It ensures that the software is a hundred percent bug-free. 

o It is cost effective. 

o Easy to learn for new testers. 

Disadvantages of Manual Testing 

o It requires a large number of human resources. 

o It is very time-consuming. 

o Tester develops test cases based on their skills and experience. There is no 

evidence that they have covered all functions or not. 

o Test cases cannot be used again. Need to develop separate test cases for each new 

software. 

o It does not provide testing on all aspects of testing. 

o Since two teams work together, sometimes it is difficult to understand each other's 

motives, it can mislead the process. 

Manual testing tools 

Selenium 

Selenium is used to test the Web Application. 

Appium 

Appium is used to test the mobile application. 

TestLink 

TestLink is used for test management. 

Postman 

Postman is used for API testing. 

Firebug 

Firebug is an online debugger. 

JMeter 

JMeter is used for load testing of any application. 

Mantis 



Mantis is used for bug tracking. 

Automation Testing 

When the testing case suites are performed by using automated testing tools is known as 

Automation Testing. The testing process is done by using special automation tools to 

control the execution of test cases and compare the actual result with the expected result. 

Automation testing requires a pretty huge investment of resources and money. 

Generally, repetitive actions are tested in automated testing such as regression tests. The 

testing tools used in automation testing are used not only for regression testing but also 

for automated GUI interaction, data set up generation, defect logging, and product 

installation. 

The goal of automation testing is to reduce manual test cases but not to eliminate any of 

them. Test suits can be recorded by using the automation tools, and tester can play these 

suits again as per the requirement. Automated testing suites do not require any human 

intervention. 

Advantages of Automation Testing 

o Automation testing takes less time than manual testing. 

o A tester can test the response of the software if the execution of the same operation 

is repeated several times. 

o Automation Testing provides re-usability of test cases on testing of different 

versions of the same software. 

o Automation testing is reliable as it eliminates hidden errors by executing test cases 

again in the same way. 

o Automation Testing is comprehensive as test cases cover each and every feature 

of the application. 

o It does not require many human resources, instead of writing test cases and testing 

them manually, they need an automation testing engineer to run them. 

o The cost of automation testing is less than manual testing because it requires a few 

human resources. 

Disadvantages of Automation Testing 

o Automation Testing requires high-level skilled testers. 

o It requires high-quality testing tools. 

o When it encounters an unsuccessful test case, the analysis of the whole event is 

complicated. 

o Test maintenance is expensive because high fee license testing equipment is 

necessary. 



o Debugging is mandatory if a less effective error has not been solved, it can lead to 

fatal results. 

White Box Testing 

The box testing approach of software testing consists of black box testing and white box 

testing. We are discussing here white box testing which also known as glass box 

is testing, structural testing, clear box testing, open box testing and transparent 

box testing. It tests internal coding and infrastructure of a software focus on checking of 

predefined inputs against expected and desired outputs. It is based on inner workings of 

an application and revolves around internal structure testing. In this type of testing 

programming skills are required to design test cases. The primary goal of white box testing 

is to focus on the flow of inputs and outputs through the software and strengthening the 

security of the software. 

The term 'white box' is used because of the internal perspective of the system. The clear 

box or white box or transparent box name denote the ability to see through the software's 

outer shell into its inner workings. 

Test cases for white box testing are derived from the design phase of the software 

development lifecycle. Data flow testing, control flow testing, path testing, branch testing, 

statement and decision coverage all these techniques used by white box testing as a 

guideline to create an error-free software. 

 

White box testing follows some working steps to make testing manageable and easy to 

understand what the next task to do. There are some basic steps to perform white box 

testing. 

Generic steps of white box testing 

o Design all test scenarios, test cases and prioritize them according to high priority 

number. 

o This step involves the study of code at runtime to examine the resource utilization, 

not accessed areas of the code, time taken by various methods and operations and 

so on. 

o In this step testing of internal subroutines takes place. Internal subroutines such 

as nonpublic methods, interfaces are able to handle all types of data appropriately 

or not. 



o This step focuses on testing of control statements like loops and conditional 

statements to check the efficiency and accuracy for different data inputs. 

o In the last step white box testing includes security testing to check all possible 

security loopholes by looking at how the code handles security. 

Reasons for white box testing 

o It identifies internal security holes. 

o To check the way of input inside the code. 

o Check the functionality of conditional loops. 

o To test function, object, and statement at an individual level. 

Advantages of White box testing 

o White box testing optimizes code so hidden errors can be identified. 

o Test cases of white box testing can be easily automated. 

o This testing is more thorough than other testing approaches as it covers all code 

paths. 

o It can be started in the SDLC phase even without GUI. 

Disadvantages of White box testing 

o White box testing is too much time consuming when it comes to large-scale 

programming applications. 

o White box testing is much expensive and complex. 

o It can lead to production error because it is not detailed by the developers. 

o White box testing needs professional programmers who have a detailed knowledge 

and understanding of programming language and implementation. 

 

Black box testing 

Black box testing is a technique of software testing which examines the functionality of 

software without peering into its internal structure or coding. The primary source of black 

box testing is a specification of requirements that is stated by the customer. 

In this method, tester selects a function and gives input value to examine its functionality, 

and checks whether the function is giving expected output or not. If the function produces 

correct output, then it is passed in testing, otherwise failed. The test team reports the 

result to the development team and then tests the next function. After completing testing 

of all functions if there are severe problems, then it is given back to the development team 

for correction. 



 

Generic steps of black box testing 

o The black box test is based on the specification of requirements, so it is examined 

in the beginning. 

o In the second step, the tester creates a positive test scenario and an adverse test 

scenario by selecting valid and invalid input values to check that the software is 

processing them correctly or incorrectly. 

o In the third step, the tester develops various test cases such as decision table, all 

pairs test, equivalent division, error estimation, cause-effect graph, etc. 

o The fourth phase includes the execution of all test cases. 

o In the fifth step, the tester compares the expected output against the actual output. 

o In the sixth and final step, if there is any flaw in the software, then it is cured and 

tested again. 

Test procedure 

The test procedure of black box testing is a kind of process in which the tester has specific 

knowledge about the software's work, and it develops test cases to check the accuracy of 

the software's functionality. 

It does not require programming knowledge of the software. All test cases are designed 

by considering the input and output of a particular function. A tester knows about the 

definite output of a particular input, but not about how the result is arising. There are 

various techniques used in black box testing for testing like decision table technique, 

boundary value analysis technique, state transition, All-pair testing, cause-effect graph 

technique, equivalence partitioning technique, error guessing technique, use case 

technique and user story technique. All these techniques have been explained in detail 

within the tutorial. 

Test cases  

Test cases are created considering the specification of the requirements. These test cases 

are generally created from working descriptions of the software including requirements, 

design parameters, and other specifications. For the testing, the test designer selects both 

positive test scenario by taking valid input values and adverse test scenario by taking 

invalid input values to determine the correct output. Test cases are mainly designed for 

functional testing but can also be used for non-functional testing. Test cases are designed 

by the testing team, there is not any involvement of the development team of software. 


