PL/SQL Basics

PL/SQL is a combination of SQL aong with the procedural features of programming languages. It was
developed by Oracle Corporation in the early 90's to enhance the capabilities of SQL. PL/SQL is one of
three key programming languages embedded in the Oracle Database, along with SQL itself and Java.

PL/SQL isacompletely portable, high-performance transaction-processing language.

PL/SQL provides a built-in, interpreted and OS independent programming environment.

PL/SQL can aso directly be called from the command-line SQL *Plusinterface.

Direct call can also be made from external programming language calls to database.

PL/SQL's general syntax is based on that of ADA and Pascal programming language.

Featuresof PL/SQL
PL/SQL hasthefollowing features
PL/SQL istightly integrated with SQL.
It offers extensive error checking.
It offers numerous data types.
It offers avariety of programming structures.
It supports structured programming through functions and procedures.
It supports object-oriented programming.
It supports the devel opment of web applications and server pages.

Advantages of PL/SQL

PL/SQL hasthe following advantages -
SQL is the standard database language and PL/SQL is strongly integrated with SQL. PL/SQL
supports both static and dynamic SQL. Static SQL supports DML operations and transaction
control from PL/SQL block. In Dynamic SQL, SQL alows embedding DDL statements in
PL/SQL blocks.
PL/SQL allows sending an entire block of statements to the database at one time. This reduces
network traffic and provides high performance for the applications.
PL/SQL gives high productivity to programmers as it can query, transform, and update data in a
database.
PL/SQL saves time on design and debugging by strong features, such as exception handling,
encapsul ation, data hiding, and object-oriented data types.
Applications written in PL/SQL are fully portable.
PL/SQL provides high security level.
PL/SQL provides access to predefined SQL packages.
PL/SQL provides support for Object-Oriented Programming.
PL/SQL provides support for developing Web Applications and Server Pages.

PL/SQL - Bagc Syntax
PL/SQL programs are divided and written in logical blocks of code. Each block consists of three sub-parts

Declarations
This section starts with the keyword DECLARE. It is an optional section and defines all variables,
cursors, subprograms, and other elements to be used in the program.

Executable Commands

This section is enclosed between the keywords BEGIN and END and it is a mandatory section. It consists
of the executable PL/SQL statements of the program. It should have at least one executable line of code,
which may be just aNULL command to indicate that nothing should be executed.

Exception Handling

This section starts with the keyword EXCEPTION. This optional section contains exception(s) that
handle errorsin the program.

DECLARE

<declarations section>
BEGIN

<executable command(s)>
EXCEPTION

<exception handling>
END;

The'Hdlo World Example

DECLARE

message varchar2(20):="'Hello, World!";
BEGIN

dboms_output.put_line(message);

END;
/

ThePL/SQL Identifiers

PL/SQL identifiers are constants, variables, exceptions, procedures, cursors, and reserved words. The
identifiers consist of aletter optionally followed by more letters, numerals, dollar signs, underscores, and
number signs and should not exceed 30 characters.

ThePL/SQL Comments

The PL/SQL supports single-line and multi-line comments. All characters available inside any comment
are ignored by the PL/SQL compiler. The PL/SQL single-line comments start with the delimiter --
(double hyphen) and multi-line comments are enclosed by /* and */.

DECLARE

-- variable declaration

message varchar2(20):="'Hello, World!";
BEGIN

/*

* PL/SQL executable statement(s)

*/

doms_output.put_line(message);
END;
/
When the above code is executed at the SQL prompt, it produces the following result —
Hello World

PL/SQL procedure successfully completed.

PL/SQL Program Units
A PL/SQL unit isany one of the following
- PL/SQL block
Function
Package
Package body
Procedure
Trigger
Type
Type body

PL/SQL - Data Types
The PL/SQL variables, constants and parameters must have a valid data type, which specifies a storage
format, constraints, and a valid range of values.

Scalar
Single values with no internal components, such asa NUMBER, DATE, or BOOLEAN.

Large Object (LOB)
Pointers to large objects that are stored separately from other data items, such as text, graphic images,
video clips, and sound waveforms.

Composite
Data items that have internal components that can be accessed individually. For example, collections and
records.

Reference
Pointers to other data items.

PL/SQL Scalar Data Types and Subtypes
PL/SQL Numeric Data Types and Subtypes
PL/SQL Character Data Types and Subtypes
PL/SQL Boolean Data Types

PL/SQL Datetime and Interval Types

PL/SQL — Variables

The name of a PL/SQL variable consists of aletter optionally followed by more letters, numerals, dollar
signs, underscores, and number signs and should not exceed 30 characters. By default, variable names
are not case-sensitive. Y ou cannot use areserved PL/SQL keyword as a variable name.

Variable Declaration in PL/SQL

PL/SQL variables must be declared in the declaration section or in a package as a global variable. When
you declare a variable, PL/SQL allocates memory for the variable's value and the storage location is
identified by the variable name.

The syntax for declaring avariableis -
variable_ name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]

Initializing Variablesin PL/SQL
Whenever you declare a variable, PL/SQL assigns it adefault value of NULL. If you want to initialize a
variable with a value other than the NULL value, you can do so during the declaration, using either of
the following —

The DEFAULT keyword

The assignment operator

For example -

counter binary_integer := 0;

greetings varchar2(20) DEFAULT 'Have a Good Day';

You can also specify that a variable should not have a NULL value using the NOT NULL constraint. If
you use the NOT NULL constraint, you must explicitly assign an initial value for that variable.

It is a good programming practice to initialize variables properly otherwise, sometimes programs would
produce unexpected results. Try the following example which makes use of various types of variables -

DECLARE
ainteger := 10;
b integer := 20;
C integer;
f red;
BEG N
c:=a+b;
doms_output.put_line('Vaue of c: ' || c);
f :=70.0/3.0;
doms_output.put_line("Vaue of f: ' || f);

END;
/

Variable Scopein PL/SQL

PL/SQL allows the nesting of blocks, i.e., each program block may contain another inner block. If a
variable is declared within an inner block, it is not accessible to the outer block. However, if avariableis
declared and accessible to an outer block, it is also accessible to all nested inner blocks. There are two
types of variable scope

Local variables — Variables declared in an inner block and not accessible to outer blocks.
Global variables — Variables declared in the outermost block or a package.

Following example shows the usage of Local and Global variablesin its simple form —

DECLARE
-- Global variables
numl1 number := 95;
num2 number := 85;

BEGIN
doms_output.put_line('Outer Variable numl: ' || numl);
doms_output.put_line('Outer Variable num2: ' || numz2);

DECLARE
-- Local variables
numl number ;= 195;
num2 number := 185;
BEGIN
dbms_output.put_line('Inner Variable numl: ' || numl);
dbms_output.put_line('Inner Variable num2: ' || numz2);
END;
END;
/

PL/SQL - Congantsand L iterals

A constant holds a value that once declared, does not change in the program. A constant declaration
specifies its name, data type, and value, and allocates storage for it. The declaration can also impose
the NOT NULL constraint.

Decdlaring a Congtant
A constant is declared using the CONSTANT keyword. It requires an initial value and does not alow
that value to be changed. For example -
Pl CONSTANT NUMBER := 3.141592654;
DECLARE
-- constant declaration
pi constant number ;= 3.141592654;
-- other declarations
radius number(5,2);
dia number(5,2);
circumference number (7, 2);
area number (10, 2);
BEGIN
-- processing
radius := 9.5;
dia:=radius* 2;
circumference := 2.0 * pi * radius;
area:=pi * radius* radius;
-- output
dbms_output.put_line('Radius: ' || radius);
doms_output.put_line('Diameter: ' || dia);
doms_output.put_line('Circumference: ' || circumference);
doms_output.put_line('Area: ' || area);
END;
/

ThePL/SQL Literals
A literal isan explicit numeric, character, string, or Boolean value not represented by an identifier. For
example, TRUE, 786, NULL, 'tutorialspoint' are all literas of type Boolean, number, or string. PL/SQL,
literals are case-sensitive. PL/SQL supports the following kinds of literals —
- Numeric Literals

Character Literals

String Literals

BOOLEAN Literas

Date and Time Literals

PL/SQL Operators
An operator is asymbol that tells the compiler to perform specific mathematical or logical
manipulation. PL/SQL language isrich in built-in operators and provides the following types of
operators —
Arithmetic operators- Addition, Subtraction, Multiplication, Division
Relational operators- Less then, Greater Than, etc.
Comparison operators- Like ,Between, In, IsNull
Logical operators- AND, OR, NOT
String operators-

PL/SQL - Conditions

Decision-making structures require that the programmer specify one or more conditions to be evaluated
or tested by the program, aong with a statement or statements to be executed if the condition is
determined to be true, and optionally, other statements to be executed if the condition is determined to be
false.

Following is the genera form of atypical conditional (i.e., decision making) structure found in most of
the programming languages —

If condition
is true

If condition
is false

conditiornal Y
code

PL/SQL programming language provides following types of decision-making statements.

PL/SQL —Loops
A loop statement allows us to execute a statement or group of statements multiple times and following is
the general form of aloop statement in most of the programming languages —

Conditional Code

If condition
is true

If condition
is false

PL/SQL provides the following types of loop to handle the looping requirements.
DECLARE
I number(1);
j number(1);
BEGIN
<< outer_loop >>
FORI IN 1..3 LOOP
<<inner_loop >>
FORj IN 1..3 LOOP
doms_output.put_line(i is:'[|i ||"andj is:"||]);
END loop inner_loop;
END loop outer_loop;

END;
/

PL/SQL —Arrays

The PL/SQL programming language provides a data structure called the VARRAY, which can store a
fixed-size sequential collection of elements of the same type. A varray is used to store an ordered
collection of data, however it is often better to think of an array as a collection of variables of the same
type.

All varrays consist of contiguous memory locations. The lowest address corresponds to the first element
and the highest address to the last element.

First Element Last Element

Numbers[1] | Numbers[2] | Numbers[3]

An array is a part of collection type data and it stands for variable-size arrays. We will study other
collection typesin alater chapter 'PL/SQL Collections'.

Each element in avarray has an index associated with it. It also has a maximum size that can be changed
dynamically.

CreatingaVarray Type
A varray type is created with the CREATE TY PE statement. Y ou must specify the maximum size and
the type of elements stored in the varray.
The basic syntax for creating a VARRAY type at the schemalevel is -
CREATE OR REPLACE TYPE varray_type name ISVARRAY (n) of <element_type>
Where,
varray_type nameisavalid attribute name,
n isthe number of elements (maximum) in the varray,
element_type is the data type of the elements of the array.

For example -
TYPE namearray IS VARRAY (5) OF VARCHAR2(10);
Type grades ISVARRAY (5) OF INTEGER,;

Example-1
DECLARE
type namesarray ISVARRAY (5) OF VARCHAR2(10);
type grades IS VARRAY (5) OF INTEGER;
names namesarray;
marks grades;
total integer;
BEGIN
names ;= namesarray('Kavita, 'Pritam’, ‘Ayan’, '‘Rishav', 'Aziz’);
marks.= grades(98, 97, 78, 87, 92);
total := names.count;
doms_output.put_line('Total '|| total || * Students);
FORiin1..tota LOOP
doms_output.put_line('Student: ' || names(i) || '
Marks: ' || marks(i));
END LOORP,
END;
/

Example-2
Elements of avarray could also be a%ROWTY PE of any database table or %TY PE of any database table
field. The following example illustrates the concept.
DECLARE
CURSOR c_customersis
SELECT name FROM customers,
type c_listisvarray (6) of customers.name%type;
name _list c_list :=c_list();
counter integer :=0;
BEGIN
FOR n IN c_customers LOOP
counter := counter + 1;
name_list.extend,;
name _list(counter) :=n.name;
dbms_output.put_line('Customer(‘|jcounter |):'[|[name_list(counter));
END LOOP,
END;
/

PL/SQL - Procedures

A subprogram is a program unit/module that performs a particular task. These subprograms are
combined to form larger programs. This is basically called the 'Modular design’. A subprogram can be
invoked by another subprogram or program which is called the calling program.

A subprogram can be created —

At the schemalevel
Inside a package
Inside a PL/SQL block

At the schema level, subprogram is astandalone subprogram. It is created with the CREATE
PROCEDURE or the CREATE FUNCTION statement. It is stored in the database and can be deleted
with the DROP PROCEDURE or DROP FUNCTION statement.
A subprogram created inside a package is a packaged subprogram. It is stored in the database and can be
deleted only when the package is deleted with the DROP PACKAGE statement. We will discuss
packages in the chapter 'PL/SQL - Packages.
PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters. PL/SQL
provides two kinds of subprograms -
Functions — These subprograms return a single value; mainly used to compute and return a value.
Procedures— These subprograms do not return a value directly; mainly used to perform an
action.

Partsof a PL/SQL Subprogram

Declarative Part

It is an optional part. However, the declarative part for a subprogram does not start with the DECLARE
keyword. It contains declarations of types, cursors, constants, variables, exceptions, and nested
subprograms. These items are local to the subprogram and cease to exist when the subprogram compl etes
execution.

Executable Part

Thisisamandatory part and contains statements that perform the designated action.

Exception-handling
Thisisagain an optional part. It contains the code that handles run-time errors.

Creatinga Procedure
A procedure is created with the CREATE OR REPLACE PROCEDUREstatement. The simplified
syntax for the CREATE OR REPLACE PROCEDURE statement is as follows —
CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name[IN | OUT | IN OUT] type[, ...])]
{IS|AS}
BEGIN
< procedure_body >
END procedure_name;

Where,
. procedure-name specifies the name of the procedure.

[OR REPLACE] option alows the modification of an existing procedure.

The optional parameter list contains name, mode and types of the parameters. IN represents the

value that will be passed from outside and OUT represents the parameter that will be used to

return avalue outside of the procedure.

procedure-body contains the executable part.

The AS keyword is used instead of the IS keyword for creating a standal one procedure.

Example
The following example creates a simple procedure that displays the string 'Hello World!" on the screen
when executed.
CREATE OR REPLACE PROCEDURE greetings
AS
BEGIN
doms_output.put_line('Hello World!");
END;
/
When the above code is executed using the SQL prompt, it will produce the following result —
Procedure created.

Executing a Standalone Procedure
A standalone procedure can be called in two ways —
Using the EXECUTE keyword
Calling the name of the procedure from a PL/SQL block
The above procedure named ‘greetings' can be called with the EXECUTE keyword as -
EXECUTE greetings,
The above call will display -
Hello World

PL/SQL procedure successfully completed.
The procedure can also be called from another PL/SQL block —
BEG N
greeti ngs;
END;
/

The above call will display -
Hello World

PL/SQL procedure successfully completed.

Deeting a Standalone Procedure

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting a
procedureis -

DROP PROCEDURE procedure-name;

Y ou can drop the greetings procedure by using the following statement —

DROP PROCEDURE greetings;

Methodsfor Passng Parameters
Actual parameters can be passed in three ways —
- Positional notation-
findMin(a, b, c, d);

Named notation
findMin(x =>a,y =>b, z=>c¢, m=> d);

Mixed notation
findMin(a, b, c, m => d);

PL/SQL - Functions

A function is same as a procedure except that it returns a value. Therefore, al the discussions of the
previous chapter are true for functions too.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The ssimplified syntax for

the CREATE OR REPLACE PROCEDURE statement is as follows —

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name[IN | OUT | IN OUT] type[, ...])]

RETURN return_datatype

{IS|AS}

BEGIN

< function_body >

END [function_name];

Where,
- function-name specifies the name of the function.

[OR REPLACE] option allows the modification of an existing function.

The optiona parameter list contains name, mode and types of the parameters. IN represents the

value that will be passed from outside and OUT represents the parameter that will be used to

return a value outside of the procedure.

The function must contain areturn statement.

The RETURN clause specifies the data type you are going to return from the function.

function-body contains the executabl e part.

The AS keyword is used instead of the IS keyword for creating a standalone function.

Example
CREATE OR REPLACE FUNCTION total Customers
RETURN number IS

total number(2) :=0;
BEGIN

SELECT count(*) into total

FROM customers;

RETURN total;
END,;

/
Calling a Function
DECLARE
¢ number(2);
BEGIN
C := total Customers();
doms_output.put_line('Total no. of Customers: ' || ¢);
END;
/

Example
The following example demonstrates Declaring, Defining, and Invoking a Simple PL/SQL Function that
computes and returns the maximum of two values.
DECLARE

anumber;

b number;

¢ number;
FUNCTION findMax(x IN number, y IN number)
RETURN number
IS

z number;
BEGIN

IFx >y THEN

Z=X;
ELSE
Z=Y;

END IF;

RETURN z;
END;
BEGIN

a=23;

b:= 45;

c :=findMax(a, b);

doms_output.put_line(" Maximum of (23,45): ' || ¢);
END;
/
When the above code is executed at the SQL prompt, it produces the following result —
Maximum of (23,45): 45

PL/SQL procedure successfully completed.
PL/SQL Recursive Functions
We have seen that a program or subprogram may call another subprogram. When a subprogram calls
itself, it isreferred to as arecursive call and the processis known as recursion.
To illustrate the concept, let us calculate the factorial of a number. Factorial of a number n is defined as
n! = n*(n-1)!

=n*(n-1)* (n-2)!

=n*(n-1)*(n-2)*(n-3)... 1
The following program calculates the factorial of a given number by calling itself recursively —
DECLARE

num number;

factorial number;

FUNCTION fact(x number)
RETURN number
IS
f number;
BEGIN
IF x=0 THEN
f:=1
ELSE
f:=x* fact(x-1);
END IF,
RETURN f;
END;

BEGIN
num:= 6;
factoria := fact(num);
doms_output.put_line(" Factoria ‘|| num || "is" || factorid);
END;
/
When the above code is executed at the SQL prompt, it produces the following result —
Factorial 61is 720

PL/SQL procedure successfully completed.
PL/SQL - Cursors

Oracle creates a memory area, known as the context area, for processing an SQL statement, which
contains al the information needed for processing the statement; for example, the number of rows
processed, etc.
A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A cursor
holds the rows (one or more) returned by a SQL statement. The set of rows the cursor holdsis referred to
asthe active set.
Y ou can name a cursor so that it could be referred to in a program to fetch and process the rows returned
by the SQL statement, one at atime. There are two types of cursors —

Implicit cursors

Explicit cursors

Implicit Cursors
Implicit cursors are automatically created by Oracle whenever an SQL statement is executed, when there
is no explicit cursor for the statement. Programmers cannot control the implicit cursors and the
information in it.
Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is
associated with this statement. For INSERT operations, the cursor holds the data that needs to be
inserted. For UPDATE and DELETE operations, the cursor identifies the rows that would be affected.
In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which aways has
attributes such as %0FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The SQL cursor has
additional attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed for use with
the FORALL statement. The following table provides the description of the most used attributes —
%FOUND
Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more rows or a SELECT
INTO statement returned one or more rows. Otherwise, it returns FALSE.
%NOTFOUND
The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or DELETE statement
affected no rows, or a SELECT INTO statement returned no rows. Otherwise, it returns FALSE.
%I SOPEN
Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor automatically after
executing its associated SQL statement.
%ROWCOUNT
Returns the number of rows affected by an INSERT, UPDATE, or DELETE statement, or returned by a
SELECT INTO statement.
Any SQL cursor attribute will be accessed as sgl%attribute_name as shown below in the example.
Example
he following program will update the table and increase the salary of each customer by 500 and use
the SQLY%ROWCOUNT attribute to determine the number of rows affected -
DECLARE
total_rows number(2);
BEGIN
UPDATE customers
SET sadary = salary + 500;
|F sgl%notfound THEN
dbms_output.put_line('no customers selected);
ELSIF sgl%found THEN
total_rows := sgl%rowcount;
dbms_output.put_line(total_rows || ' customers selected ');
END IF;
END;
When the above code is executed at the SQL prompt, it produces the following result —
6 customers selected

PL/SQL procedure successfully completed.

Explict Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context area. An
explicit cursor should be defined in the declaration section of the PL/SQL Block. It is created on a
SELECT Statement which returns more than one row.

The syntax for creating an explicit cursor is —

CURSOR cursor_name IS select_statement;
Working with an explicit cursor includes the following steps —
Declaring the cursor for initializing the memory
Opening the cursor for alocating the memory
Fetching the cursor for retrieving the data
Closing the cursor to release the allocated memory
Declaring the Cursor
Declaring the cursor defines the cursor with a name and the associated SELECT statement. For example
CURSOR c_customers IS
SELECT id, name, address FROM customers;
Opening the Cursor
Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows returned
by the SQL statement into it. For example, we will open the above defined cursor as follows -
OPEN c_customers,
Fetching the Cursor
Fetching the cursor involves accessing one row at a time. For example, we will fetch rows from the
above-opened cursor as follows —
FETCH c_customers INTO c_id, c_name, c_addr;
Closing the Cursor
Closing the cursor means releasing the allocated memory. For example, we will close the above-opened
cursor as follows -
CLOSE c_customers,
Example
Following is a complete example to illustrate the concepts of explicit cursors & minug;
DECLARE
c_id customers.id%otype;
C_hame customerS.No.ameotype;
c_addr customers.addressYotype;
CURSOR c_customersis
SELECT id, name, address FROM customers,
BEGIN
OPEN c_customers,
LOOP
FETCH c_customersinto c_id, c_name, c_addr;
EXIT WHEN c_customers%notfound;
dbms_output.put_line(c_id||"'"||c_name||'" || c_addr);
END LOOP,
CLOSE c_customers,
END;
When the above code is executed at the SQL prompt, it produces the following result —
1 Ramesh Ahmedabad
2 Khilan Delhi
3 kaushik Kota
4 Chaitali Mumbai
5 Hardik Bhopa
6 Koma MP

PL/SQL procedure successfully completed.

PL/SQL — Records

A record is a data structure that can hold data items of different kinds. Records consist of different
fields, similar to arow of a database table.
For example, you want to keep track of your books in alibrary. Y ou might want to track the following
attributes about each book, such as Title, Author, Subject, Book ID. A record containing a field for each
of these items allows treating a BOOK as a logical unit and allows you to organize and represent its
information in a better way.
PL/SQL can handle the following types of records —

Table-based

Cursor-based records

User-defined records

Table-Basad Records
The %ROWTY PE attribute enables a programmer to create table-based and cursorbased records.
The following example illustrates the concept of table-based records. We will be using the
CUSTOMERS table we had created and used in the previous chapters —
DECLARE
customer_rec customers¥rowtype;
BEGIN
SELECT * into customer _rec
FROM customers
WHERE id = 5;
doms_output.put_line('Customer ID: ' || customer_rec.id);
doms_output.put_line('Customer Name: ' || customer_rec.name);
doms_output.put_line('Customer Address: ' || customer_rec.address);
doms_output.put_line('Customer Salary: ' || customer_rec.salary);
END;
/
When the above code is executed at the SQL prompt, it produces the following result —
Customer ID: 5
Customer Name: Hardik
Customer Address: Bhopal
Customer Salary: 9000

PL/SQL procedure successfully completed.
Cursor-Based Records
The following example illustrates the concept of cursor-based records. We will be using the
CUSTOMERS table we had created and used in the previous chapters —
DECLARE
CURSOR customer_cur is
SELECT id, name, address
FROM customers,
customer_rec customer_cur%rowtype;
BEGIN

OPEN customer_cur;
LOOP
FETCH customer_cur into customer_rec;
EXIT WHEN customer_cur%notfound;
DBMS _OUTPUT.put_line(customer_rec.id || || customer_rec.name);
END LOOP,
END;
/
When the above code is executed at the SQL prompt, it produces the following result —
1 Ramesh
2 Khilan
3 kaushik
4 Chaitali
5 Hardik
6 Komal

PL/SQL procedure successfully completed.
User-Defined Records
PL/SQL provides a user-defined record type that alows you to define the different record structures.
These records consist of different fields. Suppose you want to keep track of your booksin alibrary. You
might want to track the following attributes about each book —
Title
Author
Subject
Book ID
Defining a Record
The record type is defined as —
TYPE
type_name IS RECORD
(field_namel datatypel [NOT NULL] [:= DEFAULT EXPRESSION],
field name2 datatype2 [NOT NULL] [:= DEFAULT EXPRESSION],

field_nameN datatypeN [NOT NULL] [:= DEFAULT EXPRESSION);
record-name type name;
The Book record is declared in the following way —
DECLARE
TY PE books IS RECORD
(title varchar(50),

author varchar(50),

subject varchar(100),

book id number);
book1 books;
book2 books;
Accessing Fields
To access any field of a record, we use the dot (.) operator. The member access operator is coded as a
period between the record variable name and the field that we wish to access. Following is an example to
explain the usage of record -
DECLARE

type books is record

(title varchar(50),

author varchar(50),
subject varchar(100),
book_id number);
book1 books;
book?2 books;
BEGIN
-- Book 1 specification
book1.title :='C Programming’;
book1.author :='NuhaAli
book1.subject :='C Programming Tutorial’;
book1.book id := 6495407,
-- Book 2 specification
book2.title := "Telecom Billing’;
book2.author :="Zara Ali';
book?2.subject := "Telecom Billing Tutorial’;
book2.book _id := 6495700;

-- Print book 1 record

doms_output.put_line('Book 1 title : '|| book1.title);
doms_output.put_line('Book 1 author : ‘|| book1.author);
doms_output.put_line('Book 1 subject : '|| book1.subject);
doms_output.put_line('Book 1 book_id : * || book1.book id);

-- Print book 2 record
doms_output.put_line('Book 2 title : '|| book2.title);
doms_output.put_line('Book 2 author : ‘|| book2.author);
dboms_output.put_line('Book 2 subject : '|| book2.subject);
doms_output.put_line('Book 2 book _id : '|| book2.book_id);

END;

/

When the above code is executed at the SQL prompt, it produces the following result —

Book 1 title: C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title: Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutoria

Book 2 book_id : 6495700

PL/SQL procedure successfully completed.
Records as Subprogram Parameters
You can pass a record as a subprogram parameter just as you pass any other variable. You can also
access the record fields in the same way as you accessed in the above example —
DECLARE
type books is record
(title varchar(50),
author varchar(50),
subject varchar(100),
book _id number);

book1 books;
book?2 books;
PROCEDURE printbook (book books) IS
BEGIN
doms_output.put_line (‘'Book title: ' || book.title);
doms_output.put_line('Book author : ' || book.author);
doms_output.put_line('‘Book subject : ' || book.subject);
doms_output.put_line('‘Book book_id: ' || book.book id);
END;

BEGIN
-- Book 1 specification
book1.title :='C Programming’;
book1.author :='NuhaAli
book1.subject :='C Programming Tutorial’;
book1.book id := 6495407;

-- Book 2 specification

book2.title := "Telecom Billing’;
book2.author :="Zara Ali';

book?2.subject := "Telecom Billing Tutorial’;
book2.book _id := 6495700;

-- Use procedure to print book info
printbook(book1);
printbook (book?2);

END,;
/

PL/SQL - Triggers
Triggers are stored programs, which are automatically executed or fired when some events occur.
Triggers are, in fact, written to be executed in response to any of the following events -
A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)
A database definition (DDL) statement (CREATE, ALTER, or DROP).
A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).
Triggers can be defined on the table, view, schema, or database with which the event is associated.

Benefitsof Triggers

Trlggers can be written for the following purposes -
Generating some derived column values automatically
Enforcing referential integrity
Event logging and storing information on table access
Auditing
Synchronous replication of tables
Imposing security authorizations
Preventing invalid transactions

Creating Triggers
The syntax for creating atrigger is —
CREATE [OR REPLACE | TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF}
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF col _name]
ON table name
[REFERENCING OLD ASo NEW ASn]
[FOR EACH ROW]
WHEN (condition)
DECLARE
Declaration-statements
BEGIN
Executable-statements
EXCEPTION
Exception-handling-statements
END;

Where,

the trigger_name.

CREATE [OR REPLACE] TRIGGER trigger_name — Creates or replaces an existing trigger with

{BEFORE | AFTER | INSTEAD OF} - This specifies when the trigger will be executed. The
INSTEAD OF clause is used for creating trigger on aview.

{INSERT [OR] | UPDATE [OR] | DELETE} - This specifies the DML operation.

[OF col_name] — This specifies the column name that will be updated.

[ON table name] — This specifies the name of the table associated with the trigger.
[REFERENCING OLD AS o NEW AS n] — This allows you to refer new and old values for
various DML statements, such as INSERT, UPDATE, and DELETE.

[FOR EACH ROW] - This specifies a row-level trigger, i.e., the trigger will be executed for each
row being affected. Otherwise the trigger will execute just once when the SQL statement is
executed, which is called atable level trigger.

WHEN (condition) — This provides a condition for rows for which the trigger would fire. This

clauseisvalid only for row-level triggers.

Example

The following program creates arow-level trigger for the customers table that would fire for INSERT or
UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the

salary difference between the old values and new values —

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE
sa_diff number;

BEGIN
sa_diff :=:NEW.sdlary - :OLD.sdlary;
doms_output.put_line('Old salary: ' || :OLD.salary);
doms_output.put_line('New salary: ' || (INEW.sadary);
doms_output.put_line('Salary difference: ' || sal_diff);

END;

/

When the above code is executed at the SQL prompt, it produces the following result —

Trigger created.

Triggeringa Trigger
Let us perform some DML operations on the CUSTOMERS table. Here is one INSERT statement, which

will create anew record in the table —
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (7, 'Kriti', 22, 'HP', 7500.00);
When a record is created in the CUSTOMERS table, the above create

trigger, display_salary_changes will be fired and it will display the following result —

Old salary:
New salary: 7500

Salary difference:
Because this is a new record, old salary is not available and the above result comes as null. Let us now

perform one more DML operation on the CUSTOMERS table. The UPDATE statement will update an

existing record in the table —
UPDATE customers
SET salary = salary + 500

WHERE id = 2;
When a record is updated in the CUSTOMERS table, the above create

trigger, display_salary _changes will be fired and it will display the following result —
Old salary: 1500

New saary: 2000
Salary difference: 500

