INVENTORY MANAGEMENT

By :

Kuldeep Uttam Production and Industrial Engineer

Outline

Elements of Inventory Management

Inventory and Supply Chain Management

Inventory Control Systems

Economic Order Quantity Models

Reorder Point

Classification of Inventories: ABC, VED

What is inventory?

A physical resource that a firm holds in stock with the intent of selling it or transforming it into a more valuable state.

Purpose of inventory management

- How many units to order?
- when to order? discount

Types of Inventories

Raw materials

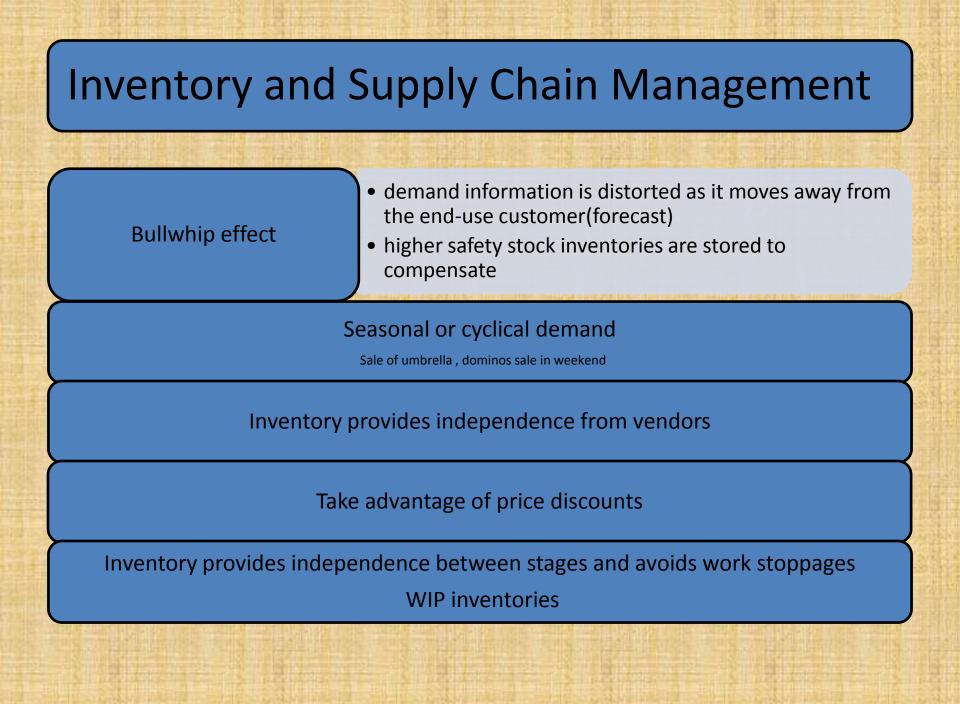
Purchased parts and supplies

Finished Goods

Work-in-process (partially completed products)

Items being transported

Tools and equipment


Nature of Inventories

Raw Materials – Basic inputs that are converted into finished product through the manufacturing process

Work-in-progress – Semi-manufactured products need some more works before they become finished goods for sale

Finished Goods – Completely manufactured products ready for sale

Supplies – Office and plant materials not directly enter production but are necessary for production process and do not involve significant investment.

Two Forms of Demand

Dependent

(not used by customer directly)

- Demand for items used to produce final products
- Tires stored at a plant are an example of a dependent demand item

Independent

- Demand for items used by external customers
- Cars, computers, and houses are examples of independent demand inventory

Inventory and Quality Management

Customers usually perceive quality service as availability of goods when they want them

Inventory must be sufficient to provide highquality customer service

Inventory Costs

Carrying cost

cost of holding an item in inventory

Ordering cost

cost of replenishing inventory

Shortage cost

 temporary or permanent loss of sales when demand cannot be met

Inventory Control Systems

Continuous system (fixed-order-quantity)

 constant amount ordered when inventory declines to predetermined level

Periodic system (fixed-time-period)

 order placed for variable amount after fixed passage of time

Economic Order Quantity (EOQ) Models

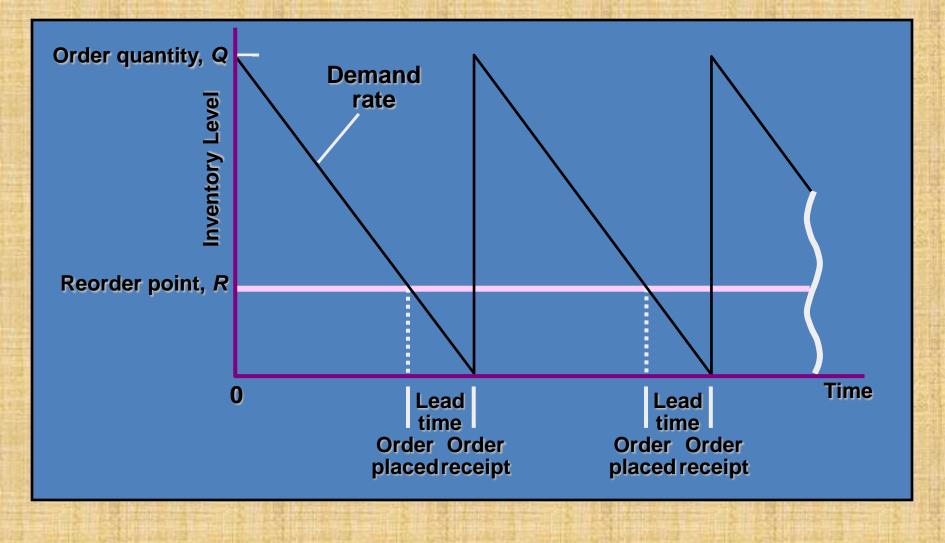
EOQ

 We want to determine the optimal number of units to order so that we minimize the total cost associated with the purchase, delivery and storage of the product.

Basic EOQ model

Production quantity model

Assumptions of Basic EOQ Model


Demand is known, constant, and independent

Lead time is known and constant

Order quantity received is instantaneous and complete

No shortage is allowed

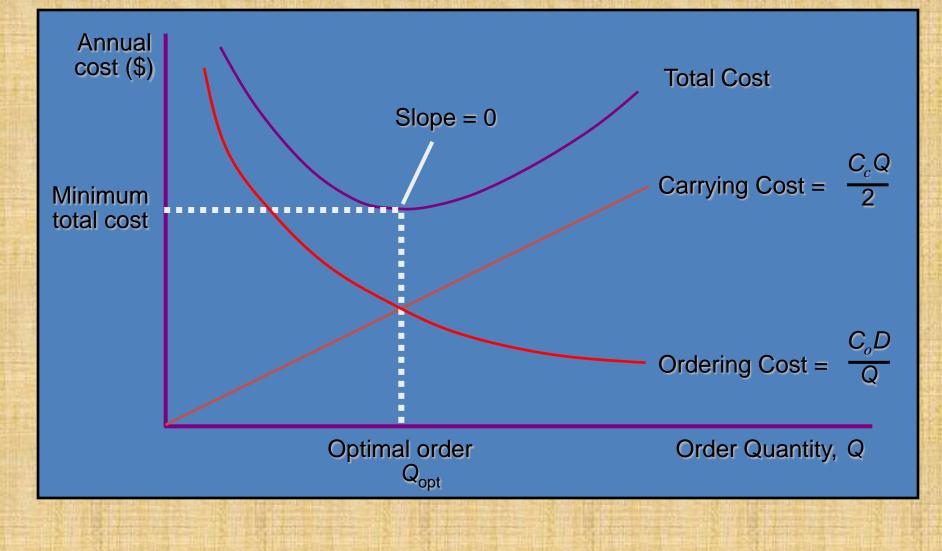
Inventory Order Cycle

EOQ Cost Model

 C_o - cost of placing order C_c - annual per-unit carrying cost *D* - annual demand *Q* - order quantity

Annual ordering cost = $\frac{C_o D}{Q}$

Annual carrying cost = $\frac{C_c Q}{2}$


Total cost =
$$\frac{C_o D}{Q} + \frac{C_c Q}{2}$$

EOQ Cost Model

Deriving Q_{opt} $TC = \frac{C_o D}{Q} + \frac{C_c Q}{2}$ $\frac{\partial \mathrm{TC}}{\partial Q} = \frac{C_o D}{Q^2} + \frac{C_c}{2}$ $0 = \frac{-C_o D}{Q^2} + \frac{C_c}{2}$ $\frac{2C_oD}{C}$ $Q_{\rm opt} =$

Proving equality of costs at optimal point $\frac{C_o D}{Q} = \frac{C_c Q}{2}$ $Q^2 = \frac{2C_o D}{C_c}$ $Q_{\text{opt}} = \sqrt{\frac{2C_o D}{C}}$

EOQ Cost Model (cont.)

Production Quantity Model

An inventory system in which an order is received gradually, as inventory is simultaneously being depleted

Also known as non-instantaneous receipt model Now replenishment not at once

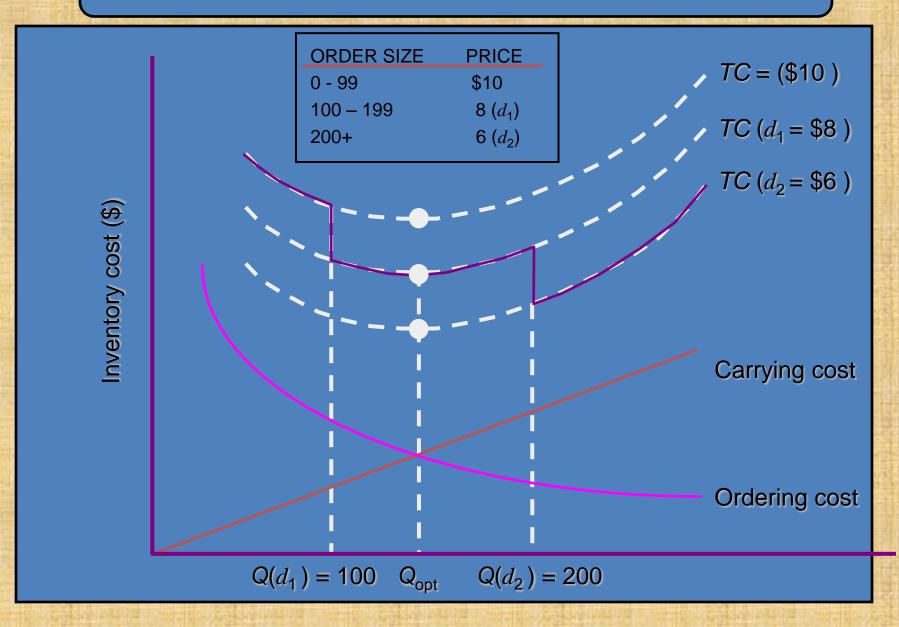
Assumption

- Q is received all at once is relaxed
- p daily rate at which an order is received over time, or production rate
- *d* daily rate at which inventory is demanded

Production Quantity Model (cont.)

p = production rate d = demand rate Maximum inventory level = $Q - \frac{Q}{n} d$ $= Q \left[1 - \frac{d}{p} \right]$ $Q_{\text{opt}} = \sqrt{\frac{2C_o D}{C_c \left(1 - \frac{d}{p}\right)}}$ Average inventory level = $\frac{Q}{2} \left[1 - \frac{d}{p} \right]$ $TC = \frac{C_o D}{Q} + \frac{C_c Q}{2} \left[1 - \frac{d}{p} \right]$

Quantity Discounts


Price per unit decreases as order quantity increases

$$TC = \frac{C_o D}{Q} + \frac{C_c Q}{2} + PD$$

where

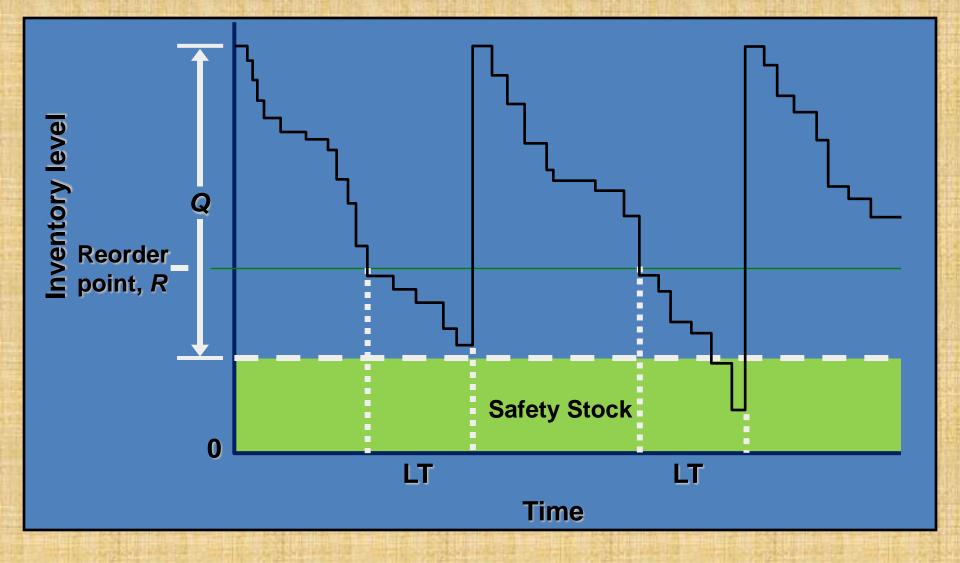
P = per unit price of the item
D = annual demand

Quantity Discount Model (cont.)

Reorder Point

Level of inventory at which a new order is placed

R = dL


where

d = demand rate per period *L* = lead time

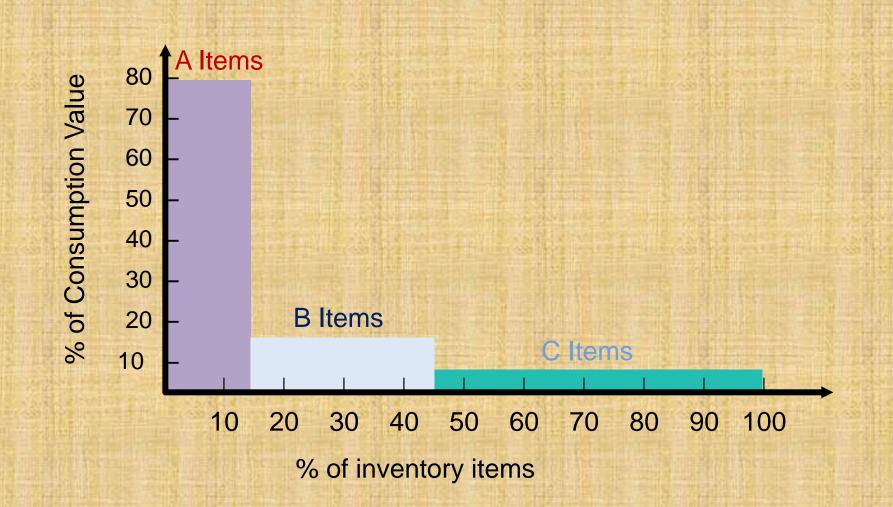
Variable Demand with a Reorder Point

Reorder Point with a Safety Stock

Classifying Inventory Items ABC Classification (Pareto Principle)

In any Retail organization there are large numbers of inventories to be maintained. It is not practical to have very stringent inventory control system for each & every item. So with the modus of having an effective Purchase & stores control we implement ABC Inventory

Classification model Known as Always Better Control (ABC) based upon Pareto rule (80/20 rule)


Divides inventory into three classes based on Consumption Value

Consumption Value = (Unit price of an item) (No. of units consumed per annum)

- Class A High Consumption Value
- Class B Medium Consumption Value
 - **Class C Low Consumption Value**

ltem Stock Number	Percent of Number of Items Stocked	Annual Volume (units) x	Unit Cost =	Annual Consump tion value	Percent of Annual consumpti on value	Class
#10286	20%	1,000	\$ 90.00	\$ 90,000	38.8%	}-72% A
#11526		500	154.00	77,000	33.2%	JA
#12760	30%	1,550	17.00	26,350	11.3%	В
#10867		350	42.86	15,001	6.4%	-23% B
#10500		1,000	12.50	12,500	5.4%	ј в

Item Stock Number	Percent of Number of Items Stocked	Annual Volume (units)	x	Unit Cost	Annual cons. value	Percent of Annual cons. value	Class
#12572		600		\$ 14.17	\$ 8,502	3.7%	С
#14075		2,000		.60	1,200	.5%	С
#01036	50%	100		8.50	850	.4%	•5% C
#01307		1,200		.42	504	.2%	с
#10572		250		.60	150	.1%	С
		8,550	Sec. Sec.	e solari e	\$232,057	100.0%	

Inventory Management Policy

A Items:

very tight control, complete and accurate records, frequent review via EOQ model.

B Items:

less tightly controlled, good records, regular review

C Items:

simplest controls possible, minimal records, large inventories, periodic review and reorder

Some time with the view of doing Lean inventory management

Within ABC category VED (Vital, essential & desirable factor) is introduced with the view of further having effective control of inventory on the basis if its being critical.

V (Vital) is the inventory where neither Substitute nor Variation Gap is allowed.
E (Essential) is the inventory which allows either of the one to be changed
D (Desirable) is the one which can have variation in both of the parameters

References:

- Cox, James F., III, and John H. Blackstone, Jr. APICS Dictionary. 9th ed. Falls Church VA: American Production and Inventory Control Society, 1998.
- Anupindi, Ravi, et al. Managing Business Process Flows: Principles of Operations Management. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.
- Meredith, Jack R., and Scott M. Shafer. *Operations Management for MBAs.* 2nd ed. New York: John Wiley & Sons Inc., 2002.
- Stevenson, William J. Production/Operations Management. 8th ed. Boston: Irwin/McGraw-Hill, 2005.

Thank You