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                                            MA/M.Sc. (SEMESTER-IV)  

                                             (Orthogonal Polynomials)  

                                              

                                                                                                  

Determinacy of £ in the Bounded Case  

        

Definition  

A polynomial )(xq , not identically zero, is called quasi-orthogonal polynomial of order n+1 if 

and only if it is of degree at most 1n  and  

                                0)(x£ k xq               for   1,........1,0  nk . 

Note that according to this definition )(xPn  and )(1 xPn  are both quasi-orthogonal polynomial of 

order 1n . 

 

Theorem 

 

  (i) )(xq  is a quasi-orthogonal polynomial of order 1n  if and only if  there are constants A and             

       B, not both zero, such that 

 

                           )()()( 1 xBPxAPxq nn    
 

(ii) For each number ,0z  there is a quasi-orthogonal polynomial of order 1n , )(xq ,  such that     

      0)( 0 zq .  This )(xq is uniquely determined up to an arbitrary non-zero factor, and its    

      degree is n+1 if and only  if  .0)( 0 zPn  

 

 

 

Proof 

 

Let 

                    )()()( 1 xBPxAPxq nn    
then 

 

                       )(x)(Ax£)(x£ k 

1

k k xPBxPxq nn    ,                 1,........1,0  nk  

 

                                           )(x£)(x£ 1

k 

1

k xPBxPA nn    

 

                                         0              if   0|B||A|   
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Hence )(xq  is a quasi-orthogonal polynomial of order 1n . 

 

Conversely, let )(xq  is a quasi-orthogonal polynomial of order 1n , so we can write 

 

                                





1

0

)()(
n

k

kk xPcxq  

 

where  kc      0)(q(x)P£)(P£ k

12

k 


xx    for     10  nk . 

 

Hence  

                                      ).()()( 1 xBPxAPxq nn    
 

(ii)   Let  0z  be a zero of  )(xPn  or )(1 xPn . Now 

 

                                     
)()()( 1 xBPxAPxq nn             

where  A and  B are not both zero. 

 

 If  0)( 0 zPn   choose constant  ,0A  .0B  

 

  Then  0)( 0 zq . 

 

Similarly for if 0)( 01  zPn . 

 

 If 0)( 0 zPn     ,0B  .0A  

 

So   )()( 1 xAPxq n
 

 

Hence )(xq  is a polynomial of degree 1n .   

Since 0)( 0 zq    0)( 01  zPn .  So  0z  is a zero of )(1 xPn  

Hence it cannot be a zero )(xPn  i.e. .0)( 0 zPn  

 

 

Theorem 

 

 The zeros of a real quasi-orthogonal are all real and simple. At most one of these lies outside the 

open interval,  ., 11   
 

 

Proof  

 

 If )(xq is an orthogonal polynomial there is nothing to prove. Let  )()()( 1 xBPxAPxq nn    

where A and B are real and different from zero. 
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 Let inx ,1    ,    1,.......,.1  ni ,  be the zeros of )(1 xPn . Then  

                           )()( ,1,1 innin xBPxq    

As i  will vary from 1,.......,.1  ni   )(xPn will change sign, so )(xq will change sign as i  varies 

from 1 to n+1. So )(xq  has n real zeros separating the n+1 zeros of )(1 xPn  . Since )(xq  is real, 

its remaining one zero must be real and must lie outside  ., 1,11,1  nnn xx  

 

 

Theorem 

 

 Let 0x  be any real number which is not a zero of )(xPn . Let )(xq denote a  real quasi-

orthogonal polynomial of order and degree n+1 which vanishes at .0x  If  0n denotes the 

quadrature  coefficient which corresponds to .1)( 0 x  

                                        2

n0 |)(|min£ x  

where the minimum is computed as )(x  ranges over all polynomials of degree at most n such 

that .1)( 0 x       

 

 

Proof  

 

 Suppose 0xynp   and write .n0npB   If )(x  has degree not exceeding n  and ,1)( 0 x then 

                0

2

0

2 |)(||)(|£ nnp xBx   . 

Hence     2

n0 |)(|min£ x
. 

Now the polynomial 

 

               
)()(

)(
)(

0

'

0 xqxx

xq
x


  

 

is of degree n and )(x  will vanish at niy  for  pi    and .1)( 0 x  

That is,  

             n0

2 )(£ x
. 

 

 

Corollary 
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where )(xpk denotes the kth orthonormal polynomial. 
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Proof 
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Theorem 

 

 Let    be any representative of £  . The for any real number 0x , 

 

             

1
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
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




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1

0

0
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


 







 
k

k xpx             if   01 x  

 

 

 

Proof  

 

 Suppose that 10  x   and let )(xq  be a real quasi-orthogonal polynomial of order and 

degree n+1 that has 0x  as a zero. Now 

 

             







0

)()()()()(£ 222

n0

x

xdxxdxx   

 

Since )(xq  has no zero smaller than 1  other than 0x . It follows that                                  

        1)()( 0

22  xx   for 0xx  , 

hence  

 

       ).()()( 0n0

0

 


 xxd

x
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Since    n0

1

0

0

2 )(



 








n

k

k xp , we have 
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The remaining case is proved in the same way. 

 

 

 

Theorem 

 

 Let ],[ ba   be a compact interval and let 
1  and 

2    be functions of bounded variation on ],[ ba     

such that  

 

               ,)()( 21  

b

a

n

b

a

n xdxxdx          n = 0, 1, 2, …. 

 

Then there exist a constant C such that Cxx  )()( 21    at  all  ],[ bax at which both are 

continuous. 

 

 

Proof  

 

 Let 

            )()()( 21 xxx    

 

So that   is of bounded variation on [a,b] and  

 

             0)(-)(   )( 21  
b

a

n

b

a

n

b

a

n xdxxdxxdx  . 

 

Hence 

 

                 0)()( 
b

a

xdx   for every polynomial )(x . 

 

Now if  f  is any continuous function on [a,b], then by Weierstrass approximation theorem f can 

be approximated by polynomials. Hence we have 
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              0)()( 
b

a

xdxf  . 

 

Taking 1)( xf  , we have 0)()(  ab  . 

 

Now for any t bta ,   which is point of continuity of  , define 

 

                    )(xf {
x

t
     

txa

bxt




 

 

 

Then f  is continuous on [a,b] and we have 

 

 

              

b

t

t

a

b

a

xtdxxdxfd )()( )(0   

 

 

                 )()()( )()( ttbtdxxaatt

t

a

    

 

                     

t

a

dxxaat )( )()(  . 

 

Hence 

 

                  )()()()( aatdxxt

t

a

    

 

Since is   continuous at t, )(' t exist and we have  

 

               )()()(' att    

 

so 

 

               )()()( 21 att   . 

 

 

Note : These notes were taught and given to the students in the class. 

 

 


