MA/M.Sc. (SEMESTER-1V)
(Orthogonal Polynomials)

Determinacy of £in the Bounded Case

Definition

A polynomial q(x), not identically zero, is called quasi-orthogonal polynomial of order n+1 if
and only if it is of degree at most n+1 and

£[x"q(x)]:0 for k=01......n—1.

Note that according to this definition P,(x) and P, (x) are both quasi-orthogonal polynomial of
order n+1.

Theorem

(i) q(x) is a quasi-orthogonal polynomial of order n+1 if and only if there are constants A and
B, not both zero, such that

q(x) = AR,.1(x) + BP, (x)

(ii) For each number z,, there is a quasi-orthogonal polynomial of ordern+1, q(x), such that
q(z,) =0. This q(x) is uniquely determined up to an arbitrary non-zero factor, and its
degree is n+1 ifand only if P, (z,) #0.

Proof

Let
q(x) = AR, (x) + BP,(X)
then
£[xk q(x)]: E[Axk P, (X)+Bx*P, (x)] ' k=01,........ n-1
= AE[Xk Pn+1(x)]+ B£[xk Pn+l(x)]

=0 if |A|+|BJ£0



Hence q(x) is a quasi-orthogonal polynomial of ordern+1.

Conversely, let g(x) is a quasi-orthogonal polynomial of ordern+1, so we can write

n+l

a(x) = ch P, (X)

where ¢, = {E[P,f(x)]}fl£[q(x)Pk(x)]: 0 for 0<k<n-1.

Hence
q(x) = AR,.; (x) + BP, (x).

(i) Let z, beazeroof P (x) or P, (x). Now
q(x) = AP, (x) + BP,(x) where A and B are not both zero.
If P,(z,)=0 chooseconstant A=0, B=0.
Then q(z,)=0.
Similarly for if P, ,(z,) =0.
If P.(z,) -0 = B=0, A=0.
So g(x) = AP,.,(x)

Hence q(x) is a polynomial of degree n+1.
Since q(z,)=0 = P,,(z,)=0. So z, isazeroof P, (X)
Hence it cannot be a zero P, (x) i.e. P,(z,) #0.

Theorem

The zeros of a real quasi-orthogonal are all real and simple. At most one of these lies outside the
open interval, (&,7,).
Proof

If g(x) is an orthogonal polynomial there is nothing to prove. Let q(x) = AP,.,(X) + BP, (x)
where A and B are real and different from zero.



Let Xx,,; » i=1... ,n+1, be the zeros of P, ,(X). Then
q(Xn+l,i ) = BI:)n (Xn+1,i )
As i will vary from i=1,....... ,.n+1 P (x)will change sign, so q(x) will change sign as i varies

from 1 to n+1. So q(x) has n real zeros separating the n+1 zeros of P, ,(x) . Since q(x) is real,
its remaining one zero must be real and must lie outside [X,,,;, X111 }

n+1,1?’ *n+l,n+l

Theorem

Let X, be any real number which is not a zero of P,(x). Let g(x) denote a real quasi-
orthogonal polynomial of order and degree n+1 which vanishes at x,. If A ,denotes the
quadrature coefficient which corresponds to z(x,) =1.

Ao =ming | 7(x) ]
where the minimum is computed as 7z(x) ranges over all polynomials of degree at most n such
that z(x,) =1.

Proof

Suppose y,, = X, and write B, = A ,. If z(x) has degree not exceeding n and z(x,) =1, then
E| (01 |= B,y 1 7(06) = Ay
Hence A, = minf | 7(x) 2]

Now the polynomial

q(x)

P = %) (%)

is of degree nand p(x) will vanishat y, for i=p and p(x,) =1.
That is,
Elp?()]=Ay

Corollary

AnO = {i pli2 (XO)}

where p, (x) denotes the kth orthonormal polynomial.



Proof

Ano = [Kn(xmxo)]_1 = {Zn: Py (Xo)pk (Xo)}
:{Zn: Py (X_O)pk (Xo)}

= {Zn: pf (Xo)} .

Theorem

Let ¢ be any representative of £ . The for any real number x,,

P(X,) — P(—o0) < {i pf (Xo)} if —o<x, <&

k=0

P(+0) —P(X,) < {i Pf(Xo)} if 7, <X, <400

k=0

Proof

Suppose that —o < x, <&, and let g(x) be a real quasi-orthogonal polynomial of order and
degree n+1 that has x, as a zero. Now

A =E|p*0]= [ 2 (0de(0) = [ p*(0)do(x)
Since q(x) has no zero smaller than & other than x,. It follows that

P2(X) > p?(x,) =1 for x < X,,
hence

Auo > [dp() = p(x,) ~ p(<0).



n -1
Since A, = {z p,f(xo)} , We have
k=0

(%) — (=) < {Zn: plf (Xo)} for x, <&.

The remaining case is proved in the same way.

Theorem

Let [a,b] be a compact interval and let ¢, and ¢, be functions of bounded variation on [a,b]
such that

Tx"dqﬁl(x):ix”d(éz(x), n=0,1,2,....

Then there exist a constant C such that ¢, (x) —¢,(x) =C at all x <[a,b]at which both are
continuous.

Proof

Let
P(X) = 4,(X) — ¢, (X)

So that ¢ is of bounded variation on [a,b] and
b b b
[x"dg(x) = [x"dg(x)- [x"dg, () =0
Hence
b
'[yr(x)d¢(x) =0 for every polynomial 7z(x).

Now if f isany continuous function on [a,b], then by Weierstrass approximation theorem f can
be approximated by polynomials. Hence we have



[ 00dg(x) =0 .

Taking f(x)=1, we have ¢(b)—¢(a)=0.
Now foranyt ,a <t <b which is point of continuity of ¢, define

asx<t

f00={

t<x<b

Then f is continuous on [a,b] and we have

0= fdg(x) =jxd¢(x) + [tdg(x)

=t4(t) - ag(a) - [ p(x)dx + tg(b) ~t4(t)

= (t—a)g(a) - [ #(x)dx.
Hence
o(t) = [ f(x)dx = (t—a)¢(a)

Since is ¢ continuous at t, ® (t) exist and we have

D (t) = 4(t) = 4(a)

SO

$ (1) =4, (1) = ¢(a).

Note : These notes were taught and given to the students in the class.



