



University of Lucknow Centenary Year लखनऊ विश्वविद्यालय शताब्दी वर्ष

# **Raman Spectroscopy-I**

डा. अभिनव कुमार सहायक प्राध्यापक रसायनशात्र विभाग लखनऊ विश्वविद्यालय लखनऊ



## Plane polarized electromagnetic radiation







## Differences in mechanism of Raman vs. IR



## Classical theory of Raman Scattering

# Electric field ⇒ Separation of charge centers ↓ Causes an induced electric dipole moment The molecule is polarized

## $\mu = \alpha E$

Where  $\alpha$  is *polarizability* of the molecule

- The polarizability of many molecules depends upon the orientation of the molecule relative to the applied field (rotation) or to separation of the atoms in the molecule (vibration).
- The polarizability is then anisotropic, i.e. depends upon direction.
- The polarizability of the molecule in various directions is conveniently represented by its *polarizability ellipsoid*.
- This is a three-dimensional surface whose distance from the electric centre of the molecule is proportional to  $1/\sqrt{\alpha_i}$ , where  $\alpha_i$  is the polarizability along the line joining a point *i* on the ellipsoid with the electric centre.

### The Ellipsoid

The Ellipsoid is a three-dimensional "quadratic" surface, the points on which satisfy the equation

$$\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 1$$

where a, b and c are the lengths of the three semi-axes. There are the following possibilities:



Polarizability ellipsoid for H<sub>2</sub>







Polarizability ellipsoid for chloroform



Polarizability ellipsoid for water





Selection Rules for Raman Spectroscopy

Rotational Raman

Polarizability of the molecule must be anisotropic – it must depend upon the orientation of the molecule.

Linear symmetric molecules such as  $CO_2$ ,  $O_2$ ,  $N_2$ do have rotational Raman spectra.

Spherical top molecules such as  $CH_4$ ,  $SF_6$  do not have rotational Raman spectra.

# Rotational Raman Spectra of linear molecules $v_J = BJ(J+1) - DJ^2(J+1)^2$ cm<sup>-1</sup> (J = 0, 1, 2,...)

In Raman spectroscopy, the precision of the measurements does not justify the retention of the term involving D, the centrifugal distortion constant, so that the above expression simplifies to:

$$v_{J} = BJ(J+1) \qquad cm^{-1}$$

 $\Delta J = 0$  or  $\pm 2$  (as opposed to  $\Delta J = \pm 1$  in pure rotational spectroscopy)

$$\Delta v = v_{J+2} - v_J = B[(J+2)(J+2+1) - J(J+1)] = B(J^2 + 3J + 2J + 6 - J^2 - J)$$
  
= B(4J + 6) (rigid rotor)

The frequency of the spectral lines is thus

$$V_{Raman} = V_{excitation} \pm B(4J + 6)$$





#### Rotational Raman scattering data for O<sub>2</sub> molecules (wavenumber shift)



#### Symmetric top molecules

Consider the polarizability ellipsoid for CHCl<sub>3</sub>, a spherical top. Only end-over-end rotations produce a change in the polarizability. The energy levels:

 $\epsilon_{i,k} = BJ(J+1) - (A-B)K^2$  (J = 0, 1, 2,...; K = ±J, ±(J-1),...)

The Raman selection rules for a symmetric top molecule are:

 $\Delta K = 0$  (isotropic polarizability about the *a* axis)

 $\Delta J = 0, \pm 1, \pm 2$  (except for K = 0 states, when  $\Delta J = \pm 2$  only)

giving rise to an S branch. A symmetric top molecule has anisotropic polarizability. This selection rule holds for any K.

(1)  $\Delta J = +1$  (R branch). Lines at  $\Delta \varepsilon_R = 2B(J+1)$  (J = 1, 2,..., but J  $\neq 0$ )

(2)  $\Delta J = 2$  (S branch).

Lines at  $\Delta \varepsilon_s = B(4J + 6)$  (J = 0, 1, 2,...)

Raman spectrum of a symmetric top



# Vibrational Raman Spectroscopy

There should be change in polarizability of the molecule.



The vibrational term values are given by

$$G(v) = \frac{E_v}{hc} = \overline{v}_0(v + \frac{1}{2})$$

where,  $\overline{v}_0 (= \frac{v_0}{c})$  is the vibration wavenumber.

The vibrational term values G(v) are modified in case of anharmonic oscillator and are given by

$$G(v) = \overline{v}_{e}(v+\frac{1}{2}) - \overline{v}_{e}x_{e}(v+\frac{1}{2})^{2} + \overline{v}_{e}y_{e}(v+\frac{1}{2})^{3} + \dots$$

Where  $\overline{v}_e$  is the vibration wavenumber, which a classical oscillator would have for an infinitesimal displacement from equilibrium. The terms  $x_e, y_e, \ldots$  are anharmonic constants.

When the molecule has both vibrational and rotational energy the total term values *S* are given by the sum of the rotational term values F(J) and the vibrational term values G(v).

S(v, J) = G(v) + F(J)

$$= \overline{v}_{e}(v + \frac{1}{2}) - \overline{v}_{e} x_{e}(v + \frac{1}{2})^{2} + \dots + \overline{B}J(J+1) - \overline{D}J^{2}(J+1)^{2}$$

Neglecting the small centrifugal distortion constant

$$S(v,J) = \overline{v}_{e}(v+\frac{1}{2}) - \overline{v}_{e}(v+\frac{1}{2})^{2} + \dots + \overline{B}J(J+1)$$

### vibrational modes of water



| Band      | Infrared    | Raman  |
|-----------|-------------|--------|
| $\nu_1$   | strong      | strong |
| $v_2$     | very strong | weak   |
| $\nu_{3}$ | very strong | weak   |



(c) v<sub>3</sub>, asymmetric stretching mode



## Rule of mutual exclusion

| Band           | Infrared | Raman    |
|----------------|----------|----------|
| $v_1$          | inactive | active   |
| $\nu_2$        | active   | inactive |
| V <sub>3</sub> | active   | inactive |



## Infrared and Raman bands of HCN

| Band           | Infrared    | Raman       |
|----------------|-------------|-------------|
| V <sub>1</sub> | weak        | very strong |
| $v_2$          | very strong | weak        |
| V <sub>3</sub> | strong      | weak        |

# Examples of spectral assignments

### N<sub>2</sub>O

| ν̃(cm⁻¹)                                               | Infrared          | Raman | band assignment                   |
|--------------------------------------------------------|-------------------|-------|-----------------------------------|
| 580                                                    | PQR m.(+ T dept.) | m.    | $2v_2 \leftarrow v_2$ hot band    |
| 589                                                    | PQR s.            | v.w.  | v <sub>2</sub> bend               |
| 1167                                                   | PR m.             | v.w.  | $2v_2$ overtone                   |
| 1285                                                   | PR v.s.           | v.s.  | $v_1$ symmetric stretch           |
| 2223                                                   | PR v.s.           | s.    | V <sub>3</sub> asymmetric stretch |
| (m = medium w = weak s = strong v s = verv strong etc) |                   |       |                                   |

(m. = medium, w. = weak, s = strong, v.s. = very strong etc.)

(1) 3N – 5 or 3N – 6 gives 4 or 3 fundamental vibrational modes. If 4 modes (linear molecule), two are degenerate:

... not all the bands are fundamentals

.:. symmetric stretch

.:. molecule is linear

- $\Rightarrow$  3 distinguishable fundamental modes
- (2) Look for strong bands in IR or Raman:
  - 589 cm<sup>-1</sup> low frequency ∴ bending mode (note PQR also)
  - 2223 cm<sup>-1</sup> highest frequency ∴ asymmetric stretch
  - 1285 cm<sup>-1</sup> intermediate frequency
- (3) Q branches (fundamentals only):
- PQR branches in  $v_2$ , but absent in  $v_1$  and  $v_3$
- (4) Mutual exclusion?
- No ∴ molecule is not centrosymmetric ∴ N<sub>2</sub>O is N–N–O

### $C_2H_2$

| ν̃ (cm <sup>-1</sup> ) | Infrared | Raman         | band assignment    |
|------------------------|----------|---------------|--------------------|
| 612                    | -        | v. weak       | bend               |
| 729                    | PQR      | <u>199</u> 1  | bend               |
| 1974                   | -        | v. strong     | symmetric stretch  |
| 3287                   | PR       | 1 <u>11</u> 0 | asymmetric stretch |
| 3374                   | -        | strong        | symmetric stretch  |

| (1) Q branches                                          |                               |
|---------------------------------------------------------|-------------------------------|
| There is a missing Q branch at 3287 cm <sup>-1</sup>    | ∴ molecule is linear          |
| $\Rightarrow$ 729 cm <sup>-1</sup> band is bending mode |                               |
| (2) Mutual exclusion?                                   |                               |
| Yes                                                     | ∴ molecule is centrosymmetric |
| $\therefore C_2 H_2$ is H-C=C-H                         |                               |
| (3) Strong bands in IR or Raman                         |                               |

| 1974 cm <sup>-1</sup>              | very strong Raman | ∴ symmetric stretch  |
|------------------------------------|-------------------|----------------------|
| 3287 and 3374 $\rm cm^{\text{-1}}$ | high frequency    | ∴ C–H stretch        |
| 3287 cm <sup>-1</sup>              | IR active         | ∴ asymmetric stretch |
| 3374 cm <sup>-1</sup>              | Raman active      | ∴ symmetric stretch  |

(4) A linear molecule has 3N - 5 = 7 fundamental vibrational modes.

Two doubly degenerate bending modes .: 5 distinguishable vibrational modes

 $\Rightarrow$  remaining 612 cm<sup>-1</sup> band is bending mode

### vibrational modes of C2H2





IR active







Combined infrared and Raman: structure determination and band assignment





#### **Rayleigh Scattering (elastic)**



Rayleigh scattering is more dramatic after sunset. This picture was taken about one hour after sunset at 500 m altitude, looking at the horizon where the sun had set.



Chandrasekhra Venkata Raman 1888-1970