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Abstract

We consider the problems in getting the probability of the data based on a particular pedi-

gree use the DNA marker information. The ”probability” here is inferred more as the ”like-

lihood” since it gives a measurement in getting such a pedigree based on the data. We im-

plement the two widely used algorithm in linkage analysis: the Elston-Stewart algorithm and

the Lander-Green algorithm. We use the significant results from the graphical models and the

Bayesian probability networks to investigate the pedigree. The graphical models can not only

be used as a language but also as an important tool in analyzing the pedigree. We simulate a

few pedigree and get their likelihood based on the two algorithms and through this procedure,

we explore the features of each algorithm and potential improving methods. We propose a way

in generating an unobserved person’s genotype according to his offspring and combined it with

the Elston-Stewart algorithm as well as the Lander-Green algorithm. We also implement an

incremental algorithm to construct the contrasts to a pedigree under research. This incremental

algorithm will give us an easy approach to get the likelihood based on the new pedigree without

re-calculating everything.
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Chapter 1

Introduction

Linkage analysis is a well established method for studying the relationship between the

pattern of the occurrence of a given biological trait such as a disease and the inheritance pattern

of certain genes in a given family. This time we concentrate on the inheritance pattern from gen-

eration to generation. Linkage analysis is performed on a pedigree, and the analysis of human

pedigree relationship has generated many challenging computational problems. This is because

in most genes mapping studies the DNA sequence of each individual is measured imperfectly:

some are missing data; some are with great uncertainty, while the others are not observed indi-

rectly such as our ancestors’ profiles. In each situation, there may be a large amount of DNA

sequence compatible with the observed data, so identifying the most likely DNA sequence con-

figurations might require simultaneously consideration of many individuals, not only the indi-

viduals related recently and directly. The linkage analysis is based on multi point analysis which

derived from the single point ones by taking the probability of recombination into account.

There are two things which interest us in linkage analysis besides the quality of data:

one is the recombination fraction and the other is the likelihood based on this pedigree when

given other things informative. The recombination rate is related to the genetic map distance

between two loci, and there are several link functions between the genetic map distance and

the recombination fraction, say, Poisson process with rate 1 per Morgan, the measurement of

genetic map distance. There are other non-parametric ways in getting the recombination rate

such as the Gaussian-Newton method and the EM algorithm etc and the EM algorithm may be
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the best way in getting the most likely recombination rate. Based on these existed methods in

getting the recombination fraction, we can concentrate on the other thing that interests us: the

likelihood.

There are many ways in investigating this problems within which the widely-used algo-

rithms are proposed by Elston-Stewart and Lander-Green respectively. They were demonstrated

in the 1970s and 1980s and later on a few enhancements were performed to make things bet-

ter. With the development in the graphical models, it is highly probable for us to create more

flexible framework allowing for efficient algorithm. The graphical models is not only a way in

expressing pedigree visually but also it benefit us in implementing the incremental algorithm.

We use the graphical models in peeling off pedigree and identifying newly insert figures. By

this mean, we can accelerate our approach more quickly without repeating inputting the same

thing.

The Elston-Stewart algorithm(1971) is the first general algorithm for rapid pedigree likeli-

hood calculation. The basic assumption in this algorithm is that the phenotype of each individual

only depends on its own associated genotypes. It and its variations work well for the oligogenic

case, but is computationally difficult in some mixed model cases, which mix over all possible

genotypes of individuals in each family unit. This algorithm is designed to deal with pedigree

with a large number of members but a small number of loci. Many improvements to the basic

algorithm have been proposed. For example Cannings et al. (1978) showed how the method

could be applied to complex pedigrees, even with inbreeding and loops. Lange and Boehnke

(1983) showed that the likelihood could be updated one individual at a time, rather than a nuclear

family and different sequences of updates could result in dramatically different computing time

and memory requirements. In the 1990s, further enhancements to the Elston-Stewart algorithm

were discovered.

Another algorithm suggested by Lander and Green(1987) is based on the Hidden Markov

Models and the inheritance vectors. On the contrary to Elston-Stewart algorithm, it is better

used in a pedigree consisting of fewer members but a large amount of loci. The Lander-Green

algorithm supports non-parametric linkage analysis, and as refer to the missing data, it performs

much better than Elston-Stewart algorithm. In 1974, Morton and McLean proposed a model

which worked for both cases, but the validity of the assumption underlying the model is not
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easy to justify. Enhancements are done in two aspects, with one resulted from the observation

that there are many redundancies within inheritance vector space so that inheritance vectors can

be grouped to speed up calculation. This was done by Kruglyak et al in (1996) and Gudbjarts-

son et al. (2000) as well as other people such as Abecasis et al. (2002). The other approach

focuses on the manipulation of transition matrices, used for the calculation of conditional inher-

itance vector distributions at neighboring locations. Two distinct approaches have proved very

successfully at speeding up this step of the calculation: either divide-and-conquer algorithm by

Indury and Elston in 1997 or Fast Fourier Transform by Krusglyak and Lander in 1998 can

reduce the computational cost of generating these conditional distributions. Although current

implementations of the Lander-Green algorithm can comfortably handle thousands of genetic

loci, still it is not enough to SNP (Single-Nucleotide polymorphism) markers which requires

millions of gene loci calculation.

Both Elston-Stewart algorithm and Lander-Green algorithm are implemented in some

computer packages such as LINKAGE, VITESSE and GENEHUNTER. Since neither of the

two algorithms can handle a large pedigree with many members and loci simultaneously, people

began to search new ways leading to the large pedigree problem. An intuitive response is to

combine the two algorithms thus to get a newly-born one but it is nearly impossible since they

are investigating in different directions. The Monte-Carlo based methods have been employed

successfully in linkage analysis, including Simulated Annealing, the Gibbs Sampler and Se-

quential Imputation. Although it works well for a large pedigree, refine to the algorithm is still

needed and understanding of the properties is necessary.

To calculate likelihood ratios between similar pedigrees, methods need to be developed

which do not traverse the entire pedigree but are based on the idea that the relevant effect of

changes only affect small subsets of the pedigree. This can either be exactly or approximately

true. The incremental algorithm is preferable in constructing the contrasting pedigree based

on an existing pedigree. Strictly speaking this is not a new algorithm but we would like to

call it as an ’accessories’ to the existing algorithms. This is an idea based on saving the old

information triple by triple instead of storing them as a multiplication of some family terms and

with properties of graphical models, we are able to get a new likelihood easily without redundant

work and thanks to the branches in graphical models we can make the computer smart enough
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to identify the updated information.

In this project we implement the Elston-Stewart algorithm and the Lander-Green algorithm

in C programming language. In order to check the reliability, we also implement the exhaustive

algorithm to give a check. Then we proposed an incremental algorithm. This algorithm is used

to construct contrasting pedigree to the pedigree which is under research. With this algorithm

we can get the likelihood for the new contrasting pedigree without re-calculating all the triples

or markers we have. In Chapter 2 we introduce basic concepts from genetics; in Chapter 3 we

illustrate how to use graphic models in the pedigree, including using it to represent the pedigree,

process of meiosis and inheritance pattern. It makes the complicated pedigree understandable.

In Chapter 4 we focus on the three existed algorithm and the incremental algorithm. We also

give some simulations in explaining them. Finally, in Chapter 5, we give a conclusion based on

our work.
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Chapter 2

Mendelian Models

2.1 Some Basic Genetics

A chromosome is a single large macromolecule of DNA, which constitutes a physically

organized form of DNA in a cell. It is a very long, continuous piece of DNA (a single DNA

molecule). In diploid individuals such as mammals, DNA in each normal cell is packed into

pairs of chromosomes. Human beings, for example have 23 pairs and 22 of them are called

the autosomes, with the remaining pair are the sex chromosomes. For a given individual, one

chromosome in each pair derives from the DNA of his mother and the other from the DNA of

his father. A specific segment of chromosome is known as a locus, and we typically refer to the

individual’s DNA at this locus as his gene. Different variants of a gene are called alleles. Then

unordered pair of alleles at any locus is known as the genotype and the potentially observable

characteristic is the phenotype, for example eye color, blood type, affected/normal etc. The term

ordered genotype, or full genotype, can be used to keep track of the parental origins of each allele

in a genotype, but we don’t distinguish them since we just have to sum all the possibilities.

If both alleles are of the same type, we say that the genotype is homozygous otherwise

heterozygous. If a homozygote has the same phenotype as a heterozygous type with which it

has only one allele in common, we say that the common allele dominates the other allele in the

heterozygote. Alternatively, the allele that is not shared is said to be recessive to the common

one. An easy example is human ABO blood group, simplified to a three-allele genetic system.
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Genotype AA AO AB BB BO O

Phenotype A A AB B B O

Table 2.1: The six phenotypes for the human ABO system and the four corresponding expressed

phenotypes

Table 2.1 illustrates the relationships between phenotypes and genotypes for human blood type.

The homozygous genotypes are AA, BB and OO, while the heterozygous types are AO,

AB and BO. AA and AO have the same phenotypes, so A dominates O or O is recessive to

A. Similarly we can see that O is also recessive to B. The genotype AB has its own phenotype,

and we conclude that A and B are co-dominant.

2.1.1 Mendelian Inheritance

We express Mendel’s first law as follows:

1. alleles account for variations in inherited characteristics;

2. for each characteristic, an organism inherits two alleles, one from each parent;

3. alleles could express the trait: dominant or recessive, however, there are incomplete dom-

inance;

4. two alleles for each characteristic segregate during gamete production.

Furthermore, an individual passes of his two genes to each of his children, indepen-

dently for different segregations and independently of segregations from the other parent. When

genes segregate with equal probability 1/2, we have what is known as Mendelian segregation.

Mendel’s second law states that segregations of genes at different loci are independent. This is

now known not to be true in general: these segregations may be correlated if the loci are close

together on the same chromosome or linked.
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2.2 Recombination

Sperm and egg end up with the DNA they get through a process called meiosis. When cells

normally make new copies of themselves, each of the new cells ends up with 46 chromosomes

for humans. Recombination events occur during meiosis. Breaks occur at several random posi-

tions which allow for the exchange of segments of chromosome within the pair. This is called

crossing over and refers to the interchange of genetic material between the two homologous

chromosomes.

Recombination is due to the independent assortment of chromosomes during meiosis.

However, alleles that are on the same chromosome are more likely to be inherited together,

and are said to be linked. Because there is some crossing over of DNA when the chromosomes

segregate, alleles on the same chromosome can be separated and go to different offspring cells.

There is a greater probability of this happening if the alleles are far apart on the chromosome,

as it is more likely that a cross-over will occur between them.

The resulting chromosomes, which are mixtures of the maternal and paternal chromosome

segments, separate and one of each pair is passed to the gamete-the genetic contribution form a

single parent to the next generation, sperm or egg. We here induce the term haplotype to refer to

a listing of all possible alleles in a single gamete at a given number of loci. They may lie on the

same chromosome, but not necessarily. For example if we ignore the order, there are 3 haplotype

for blood group, A, B and O. The correlation in segregation between liked loci is due to the fact

that it is highly unlikely that a crossover will occur between two loci which are physically close

on the chromosome. Loci which are ’far apart’ (or on different chromosomes) are more likely to

segregate independently in accordance with Mendel’s second law. A straightforward example is

shown in Figure 2.1.

The recombination fraction r between two loci is defined as the probability that the genes

segregating to the gamete at these loci come from different parental chromosomes. For loci

close together, r is nearly 0; which when loci are far away, r tends to be 1/2, indicating that the

loci are segregating independently. That is to say, under assumptions of the meiosis model for

most diploid species, r ranges from 0 to 1/2.
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Figure 2.1: Schematic representation of meiosis showing the chromosomes which form the

gametes containing some maternal and some paternal DNA after crossing over has occurred.

Let M1, M2,...Mn be n genetic loci, listed in the correct chromosomal order. Given infor-

mation about ri, i = 1 to n− 1 denote the recombination fraction between adjacent loci Mi and

Mi+1. Thus we could get a vector R = (r1, r2, ...rm−1) for different locus-pair.

Naturally it is reasonable and important for us to consider about the number of recombi-

nation in each chromosome. Furthermore, we know that the number of recombination is related

to the probability of recombination and the probability of a recombination happening between

neighboring loci will determine the total expected number of recombination. Thus if 200 loci

were considered from a chromosome, the average probability of a recombination between neigh-

boring loci would be 2.63/199, which is around 0.01. It would still be possible, though, to have

a recombination happening between each pair of neighboring loci. However, though possi-

ble it would be highly improbable (probability of about 10−374). So number of recombination

shouldn’t be controlled by bounds but merely by probabilities, which means it is theoretically

possible that if we have 100 loci, 99 times of recombination would have happened.

2.3 Other Prerequisite Knowledge

In this part we introduce some related background knowledge under which we build our

models. There are three definitions we would like to list here.
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• Hardy-Weinberg principle It is a relationship between the frequencies of alleles and the

genotype of a population. The occurrence of a genotype, perhaps one associated with

a disease, stays constant unless matings are non-random or inappropriate, or mutations

accumulate. Therefore, the frequency of genotypes and the frequency of alleles are said

to be at ’genetic equilibrium’. Genetic equilibrium is a basic principle of population

genetics.

• Linkage equilibrium It describes the situation in which the haplotype frequencies in a

population have the same value that they would have if the genes at each locus were com-

bined at random. In other words, it occurs when linkage disequilibrium is at zero. Linkage

equilibrium can be thought of as the two locus version of the Hardy-Weinberg ratio, but it

is a property of haplotype, not genotypes. A diploid individual has two haplotype, and at

the equilibrium the genotypes at each locus will be in Hardy-Weinberg proportions while

the haplotype are at linkage equilibrium.

• Haldane’s Model It assumes independence of genes at different loci; if the selection

intensity is 0.1 for each gene moving towards fixation, and there are N such genes, then the

reproductive capacity of the species will be lowered to 0.9N times the original capacity.

Therefore, if it is necessary for the population to fix more than one gene, it may not have

reproductive capacity to counter the deaths.
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Chapter 3

Graphic Models

3.1 Graphical Definitions

We introduce fundamental concepts in pedigree and graphical models. We will define a

pedigree or a genealogy to be a group of individuals together with a full specification of all

the relationships along with the members among them (Thompson, 1986). The set of familial

relationships among a group of individuals forms what is commonly known as a pedigree and a

variety of graphical representations have been developed for handling pedigrees in a precise and

consistent manner. We define a pair of pedigree members to be spouses only if they have mutual

offspring in the pedigree and every such pairing is called a marriage. Those without parents

are called the founders of the pedigree and these, by definition are unrelated. Pedigrees are

commonly represented graphically, although not always strictly as a graph. A simple example

is shown in Figure 3.1.

A graph, G=(V, E) is a structure consisting of a finite set V of vertices (or so called nodes)

and a finite set E of edges between these vertices. The vertices representing the variables while

the edges representing the links between these variables. Edges can be either directed, with

arrows indicating the direction of the link or undirected. Directed edges are also called arcs and

a graph with arcs is called a directed graph. This indicates that we can represent a pedigree

by a directed graph (Lange and Elston, 1975) as shown in Figure 3.2. where the nodes denote

individuals and the arcs connect individuals to their offspring. It is an obvious way to show a
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Figure 3.1: A standard graphical representation of a simple pedigree of 5 individuals. Females

are represented by circles and males by squares. Individuals 1, 2 are the baseline founders while

3 is the recent founder. Individual 5 is the final and he has no marriage.

standard representation of the transmission of genes from parents to offspring.

Although for probability calculations on pedigrees the vertices represent variables for prop-

erties of individuals rather than the individuals themselves, the parent-offspring analogy used

generally in graphical modeling, in effect, becomes literal for pedigree analysis. Figure 3.1

and Figure 3.2 are both marriage node graphs, which means the parents might not be the bio-

logical parents of their offspring. Figure 3.2 is also known as a relationship graph with nodes

representing individuals and directed edges connecting individuals to their offspring.

Figure 3.2: Pedigree of previous figure drawn as a directed graph with nodes representing indi-

viduals and directed edges connecting individuals to their offspring
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3.2 Bayesian Networks

Realize that we could split the complicated problem into small manageable components;

an immediate thinking is to treat a pedigree generation by generation, family by family. The

advantage in graphic model is that a complex problem can be represented in a graphical form

which can then inform the development of efficient computational algorithms for performing

calculations. A better approach would be Bayesian network which might lead to essentially

simplify the computations.

We have to be careful for our applications that the nodes represented in the pedigree graph

may not be the child’s biology parents. For instance, for 3 and 5, we say 3 is a parent of 5

since there is a directed edge from 3 to 5, or 5 is a child of 3. In contrast with the biological

interpretation of these terms, a node in a graph can have more than two parents, for example

adopted child. To avoid the ambiguity, we will further refer the term using expressions like

graph or bio parent. In the later likelihood calculation, we will see that a graph but not bio

parent would simplify the likelihood calculation and get a zero probability in forming such a

pedigree.

Recall that a graph G = (V, E) is a collection of nodes and edges which can be either

directed (arcs) or undirected. A walk is a sequence of k ≥ 0 nodes v0,v1,...,vk that satisfies vi

connected with vi+1 for each i = 0, .., n − 1. A path is a walk without repeated nodes. If

there is a path from a to b we say that a lead to b and write a 7→ b.If all edges of the path are

undirected, the path is undirected; and the path is directed if all edges are directed. If a 7→ b

and b 7→ a doesn’t hold, we say that a is an ancestor of b and b is a descendent of a. A walk

beginning and ending with the same node is a cycle or loop. If all the edges of a graph are

directed and if the graph has no directed cycles, it is a directed acyclic graph or DAG. A graph is

complete if all nodes are joined by an arc or a line. A subset is complete if it induces a complete

subgraph. A complete subset that is maximal is called a clique. A graph is connected if there

is a walk between any pair of nodes. Unless otherwise stated, it will be assumed that all graphs

are connected.

Returning to our graphical representation for a pedigree, we state the following require-

ments:
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• The maximum cardinality for a clique is 2: compromised of a parent and a child, which

require a moral graph without loop or inbreeding;

• The pedigree graph should be a DAG, with arcs connected ancestors and children; here

we don’t distinguish graphical parent from bio parent since we don’t know the hidden

truth.

A Bayesian network (or a belief network) is a probabilistic graphical model that represents

a set of variables and their probabilistic independencies. For example, a Bayesian network can

be used to calculate the probability of a patient having a specific disease, given the absence

or presence of certain symptoms, if the probabilistic independencies between symptoms and

disease as encoded by the graph hold. Here we use Bayesian network to calculate the pedigree

likelihood based on the observed genotypes, knowing that there are some causal relationships

between generations and they could be interpreted by graph. The term ”Bayesian networks”

emphasizes three aspects:

1. the often subjective nature of the input information;

2. the reliance on Bayes’s conditioning as the basis for updating information;

3. the distinction between causal and evidential modes of reasoning.

Formally, Bayesian networks are DAG whose nodes represent variables, and whose arcs

encode conditional independencies between the variables. Nodes can represent any kind of

variable, be it a measured parameter, a latent variable or a hypothesis. They are not restricted

to representing random variables, which forms the ”Bayesian” aspect of a Bayesian network.

Back to our pedigree graph, we only require a node set V , where the nodes represent random

variables. The set of parent nodes of a node Xi ∈ V is denoted by pa(Xi). A directed acyclic

graph is a Bayesian Network relative to a set of variables if the joint distribution of the node

values can be written as the product of the local distributions of each node and its parents. A

DAG is a Bayesian Network relative to a set of variables if the joint distribution of the node

values can be written as the product of the local distributions of each node and its parents:

f(x) =
∏

Xi∈V

f(Xi|Xpa(Xi))

If node Xi has no parents, its local probability distribution is said to be unconditional,
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otherwise it is conditional. So it then holds that any node, given the values at its parents, is

conditionally independent of any other nodes. This is known as the directed local Markov

property. It can be seen that using a Bayesian network we can specify the joint distribution

completely from the associated DAG and the conditional distributions of each node given its

parents. We give the nodes without ancestor probability 1 and later on assign a prior probability

on them.

3.3 Bayesian Network Representations for Pedigrees

There are several ways in using the networks and each of them has different properties.

Mostly used ones are genotype network, marriage network and segregation network. We de-

scribe the genotype network initially since the likelihood calculation base on each haplotype is

the term that interests us the most.

3.3.1 The Genotype Networks

We choose this network to expand and research our pedigree based on the trait of our data

and algorithms: since our algorithms are based on Mendelian model and all data are binary. An-

other point we have to figure out is that the genotype networks holds only under the Mendelian

inheritance model. A typical genotype network is shown in Figure 3.3 .

Each node i in this DAG represents a random variable assigning a genotype to individ-

ual i. The graph parents here are considered also as the biological parents of the nonfounders.

Genotype Gi for each individual i denotes the person’s genotype at our interested locus, so

that Gi = (Li1 ,Li0), where Li1 , Li0 assigning the allelic type in the gene inherited by indi-

vidual i from his father and mother respectively. Also we could decompose the genotype as

Gi = (Gmi , Gpi) , where each component denotes an allele got from mother or father. We will

use the genotype networks throughout the work and there will be an extra thing in the genotype

networks shown later, the observed genotypes for some individuals in the pedigree.

Now we derive the probability for such a genotype network. First of all we need to get

probabilities for founders genotypes as well as the transmission probabilities. If we denote the
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Figure 3.3: A genotype network

probabilities of the founder genotypes by π and the transmission probabilities by:

τ(gi|gmi , gpi) = P (Gi = gi|Gmi = gmi , Gpi = gpi)

So the likelihood based on the genotype network is:

P (g1, ...gm) =
∏

i∈F

π(gi)
∏

j /∈F

τ(gi|gmi , gpi) (3.1)

where F is the set of individuals which are founders of the pedigree and the transmission proba-

bilities τ are under the Mendelian models.

3.3.2 Genetic Descent Graph

A descent graph for the locus of interest is a model which species which allele was inher-

ited by each individual from each parent. It is a haplotype graph nd quite straightforward in

each single locus however in multi point linkage analysis we hardly use it since it requires too

many graphs to be taken into consideration. Combining the neighboring descent graph together

we could inference whether there is a recombination happening or not. A genetic descent graph

is shown in Figure 3.4.
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Figure 3.4: A genetic descent graph

A genetic descent graph give us a clear idea on the origins of an individual’s alleles at each

locus. We will see later in the Lander-Green algorithm we could use the genetic descent graph

combined with the genotype networks to investigate the inheritance pattern in a pedigree.
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Chapter 4

Algorithms in Calculating Pedigree

Likelihood

4.1 Background

Linkage analysis is an integral part of investigations into the genetics of pedigree infor-

mation, complex diseases and anthropology research. It has been used to successfully calculate

the likelihood on a pedigree, such as DNA test and mapping many disease genes. We empha-

size again that genetic linkage occurs when particular alleles are inherited jointly. In parametric

linkage analysis a particular genetic model for the trait is assumed and the likelihood of the

pedigree data is computed for the trait locus placed at various positions along a framework map.

Multipoint likelihoods use all the available markers and take recombination into consideration.

Besides the raw materials of pedigree structure and observed phenotypes, a genetic model

is a prerequisite for likelihood calculation. At its most elementary level, a model postulates the

number of loci necessary to explain the phenotypes. For purposes of discussion, it is convenient

to use the term ”genotypes” when discussing the multilocus, ordered genotypes of an underlying

model. Because ordered genotypes preserve phase, they are preferable to unordered genotypes

for theoretical and computational purpose. In this work, the observed genotypes are all ordered

thus.
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4.1.1 Three Elements in Linkage Analysis

There are three fundamental elements in linkage analysis: prior probability, penetrance

function and segregation probability.

Prior probabilities pertain only to founders. If G is a possible genotype for a founder, then

in the absence of other knowledge, Prior(G) is the probability that the founder carries genotype

G. Almost all models postulate that prior probabilities conform to Hardy-Weinberg (based on

allele frequencies) and linkage equilibrium (may be multilocus frequencies). Here we take the

uniform prior, which is 0.0162 (1/16) under the 4-allele’s circumstance.

Penetrance function specifies the likelihood of an observed phenotype X given an unob-

served genotype G. We denote penetrance by Pen(X|G). Penetrance apply to all people in

a pedigree, founders and non founders alike. In general, Pen(X|G) can represent a condi-

tional likelihood as well as a conditional probability. This could be the case that Pen(X|G) is

some real numbers that lie in interval [0, 1]. The assumption we used here is full-penetrance, i.e

Pen(X|G) is either 1 or 0.

The last term is the segregation probabilities. Let Tran(Go|Gm, Gf ) denote the prob-

ability that a mother with genotype Gm and a father with genotype Gf produce a child with

genotype Go. For ordered genotypes, the child’s genotype Go can be visualized as an ordered

pair of gametes (Um, Vf ), Um being maternal in origin and Vf being paternal in origin. Because

any two parents create gametes independently, the segregation probability:

Tran(Go|Gm, Gf ) = P (Um|Gm) ∗ P (Vf |Gf )

factors into two gamete segregation probabilities.

4.1.2 Recombination

Specification of gamete segregation probabilities is straightforward for single-locus mod-

els. For a single autosomal locus, P (Um|Gm) is either 1, 0.5 or 0 and so is for P (Vf |Gf ),

depending on whether the single allele Um is identical in state to both, one, or neither of the two

alleles respectively.

24



We used the Haldane’s model, which postulates that recombination occurs independently

on disjoint intervals. To apply Haldane’s model, one begins by discarding all homozygous loci

in the parent. This entails no loss of information because recombination events can never be

inferred between such loci. Between each remaining adjacent pair of heterozygous loci, ga-

metes can be scored as recombinant or no recombinant. Once adjacent intervals have been

consolidated to the point where all interval endpoints are marked by heterozygous loci, calcula-

tion of gamete transmission probabilities becomes straightforward. Invoking independence, the

probability of a gamete is now 0.5 times the product over all consolidated intervals of the cor-

responding recombination rate r or their complements 1− r, depending on whether the gamete

shows recombination on a given interval or not. The factor of 0.5 accounts for the parental chro-

mosome chosen for the first locus. In the exceptional case where there are no heterozygous loci,

the gamete transmission probability is 1. If there is only one heterozygous locus, the gamete

transmission probability is 0.5.

4.2 Likelihood Calculation

The likelihood L of a pedigree with n people can now be assembled from these component

parts. Let the ith person have phenotype Xi and possible genotype Gi. Conditioning on the

genotypes of each of the n people yields the representation of the likelihood:

L =
∑

G1

. . .
∑

Gn

Pr(X1...Xn|G1, ...Gn)Pr(G1, ...Gn)

=
∑

G1

. . .
∑

Gn

∏

i

Pen(Xi|Gi)Pr(G1, ...Gn)

=
∑

G1

. . .
∑

Gn

∏

i

Pen(Xi|Gi)
∏

j

Prior(Gj)
∏

(k,l,m)

Tran(Gm|Gk, Gl) (4.1)

The product on j is taken over all founders and the product on k, l,m is taken over all

parent-offspring triples. Let’s take a simple example as shown in Figure 3.1.

To calculate the likelihood, first we calculate the Prior(G) only over 1 and 2. Then get

P (Go|Gm, Gf ) over the 2 nuclear family: 3, 4, 5 and 1, 2, 3. We take the full penetrance which

means we could eliminate any genotypes G with Pen(X|G) = 0. Later on we will see that

indeed we are dealing with an ideal case, where genotypes for members are all known or at least
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most are known so that we don’t have to take phenotypes into consideration and eliminate the

penetrance in likelihood immediately.

4.3 Exhaustive Algorithm

The exhaustive algorithm is considered to be a quite straightforward choice in calculating

the likelihood of the data based on the pedigree. It is low efficient compared with the existing

linkage algorithms and performs badly when the scale of loci and number of individuals become

larger. The advantage of the exhaustive algorithm is that it is easy to implement. We use

exhaustive algorithm to validate the result given by the other algorithms.

Given parental and child’s genotypes, we calculate the likelihood of getting such a child

from the parent. The process could be interpreted as follows:

• Input the parents’ and child’s genotypes; in order to simplify the input and make the

judgments easy, binary data are used to denote the haplotype in each locus, where 1 stands

for the dominant gene and 0 stands for the recessive gene. For example if the genotype is

AaBb, then we transform them to 1010. Since we don’t know which two alleles are on

the same chromosome so we have to consider all possible combinations of the two pairs

of alleles: it could be A going with b while a accompanied by B or totally different! It

becomes quite tricky when more loci are under consideration

• Input the recombination rate r. Usually r lies in the interval [0, 0.5] and based on the

previous knowledge we mainly focus on an interval range from 0 to 0.5;

• Logical judgments are taken in the first step, i.e to see if it is possible for the couple

under given genotypes to get such a child. This is to somehow simplify the program. In

the likelihood calculation we notice that there are some genotypes that can’t induce an

offspring as a given child. Based on this, we eliminate the impossible parental genotypes

at the beginning. For example if parents’ are AaBB and AABB, it is impossible for them

to get a child whose genotype is aaBB unless there is a mutation, which is not considered

here.

• Output the likelihood.
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Genotype Ab AB ab aB

Probability 0.5r 0.5(1− r) 0.5(1− r) 0.5r

Table 4.1: Possible egg’s type and the corresponding probabilities

Genotype AB Ab aB ab

Probability 0.25(1− r) 0.25r 0.25r 0.25(1− r)

Table 4.2: Updated table for Table 4.1 under non-informative sequence.

4.3.1 Programming Interpretation

What we are going to emphasize here is the recombination rate, r. If two alleles are not

in the same chromosome, the probability for the child to get the two alleles such as Ab is 0.5r.

If our data is concatenation of several chromosomes, the ‘recombination’ probability between

neighboring loci that belong to different chromosomes becomes the probability of starting the

copying of one chromosome from the opposite lineage (i.e paternal instead of maternal or ma-

ternal instead of paternal) of the lineage we finished copying the other chromosome from. These

are believed to be independent, and the ‘recombination’ probability should be 0.5. Bottom line

is that everything becomes simpler if you just focus on neighboring loci and the probability of

recombination between them and forget about the global picture.

Assume that the mother’s genotype is AaBb where AB are on the same chromosome and

ab are on the other chromosome, the possible egg’s type and the corresponding probability is as

shown in Table 4.1.

The above situation is based on the explicit information of the chromosomal sequence.

Now we expand it to a more general way. Suppose that the sequence is non-informative which

means we don’t know whether AB are on the same chromosome or aB are on the same chro-

mosome. In this case we take our chance by multiplying 0.5 to each probability and list all

possibilities. Assume that AB are on the same chromosome and the corresponding table is

shown in Table 4.2.

Suppose the father’s genotype is AaBb too. First we investigate in the situation where aB

are on the same chromosome and we get a table for the father and combining the two parental
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Mother/Father Ab AB ab aB

Ab 0.252r(1− r) 0.252(1− r)2 0.252(1− r)2 0.252r(1− r)

AB 0.252r2 0.252r(1− r) 0.252r(1− r) 0.252r2

ab 0.252r2 0.252r(1− r) 0.252r(1− r) 0.252r2

aB 0.252r(1− r) 0.252(1− r)2 0.252(1− r)2 0.252r(1− r)

Table 4.3: Possible genotypes for the child given the parents’ genotypes with consideration of

the ”non-informative” sequence

tables together we get Table 4.3. Table 4.3 illustrates all possible genotypes for their children

and the corresponding probability.

According to each chromosome sequence, we give a transmission matrix with the multi-

plicator 0.25. For the father the two matrices are:

PF1=


 0.25r 0.25(1-r)

0.25(1-r) 0.25r


 ,

PF2=


 0.25(1-r) 0.25r

0.25r 0.25(1-r)




The mother’s situation may be deduced by analogy and we could get PM1, PM2. Then

we multiply the paternal transformation matrix by the maternal transformation matrix and get a

child genotype likelihood matrix, i.e we could multiply PF1 by MF1 and the child matrix is:

CF1=PF1×MF1=


 0.252(r2 + (1− r)2) 0.252r(1− r)

0.252r(1− r) 0.252(r2 + (1− r)2)




Repeat this procedure and we get 4 child matrices corresponding to 16 genotypes and we

could sum the probability representing the same phenotypes. Combined with the judgment step,

we could get the child’s likelihood. This example is based on the non-informative situation in

which we don’t know the chromosomal sequence while later on all of our examples are based

on the informative chromosomal sequence.

28



4.3.2 Evaluation on Exhaustive Algorithm

We find that the exhaustive algorithm is powerless in dealing with situations which have

a large number of loci; if we have n loci, we have to consider all 2n possible haplotype and

calculate n22n times in order to get the likelihood in a triple. As refer to the number of member

in the pedigree, it scales polynomially, which is much worse than Elston-Stewart algorithm.

4.4 Elston-Stewart Algorithm

Now we implement the Elston-Stewart algorithm to calculate the pedigree likelihood.

Among all the existing algorithms for linkage analysis, the Elston-Stewart algorithm is an ef-

ficient way to deal with very large pedigrees and limited to a few markers. This algorithm

performs under the Mendelian Models and is composed of three elements: prior probabilities

for the founders, segregation probabilities for offspring genotypes given parents, and the last one

is penetrance for individual phenotypes given genotypes. The Elston-Stewart algorithm scales

exponentially in the number of loci, and linearly in the number of pedigree members. This al-

gorithm searches the pedigree from the bottom to the top and provides a way of calculating the

likelihood in a recursive manner, allowing for the possibility of computer-based linkage analysis

in general pedigrees. One of the main features of this algorithm is its dependence on peeling.

In the process of peeling, small nuclear families within a larger pedigree are analyzed, and all

of the information is collapsed on to one of the parents(or other relatives), whose own sibship

is analyzed next, and so on until all of the information is collapsed onto one final person. This

method is quite straightforward unless there is a loop in the pedigree, however this situation is

out of consideration here. The calculating formulation based on Elston-Stewart Algorithm is as

follows:
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L =
∑

G1

. . .
∑

Gn

Pr(X1...Xn|G1, ...Gn)Pr(G1, ...Gn)

=
∑

G1

. . .
∑

Gn

∏

i

Pen(Xi|Gi)Pr(G1, ...Gn)

=
∑

G1

. . .
∑

Gn

∏

i

Pen(Xi|Gi)
∏

j

Prior(Gj)
∏

k,l,m

Tran(Gm|Gk, Gl) (4.2)

4.4.1 Algorithm Description

Here is the algorithm [5]:

1. For each pedigree member, list only those ordered genotypes compatible with his or her

phenotype;

2. For each nuclear family:

(a) Consider each mother-father genotype pair.

• Determine which zygotes can arise from the genotype pair.

• If each child in the nuclear family has one or more of these zygote genotypes

among his or her current list of genotypes, save the parental genotypes and any

child genotype matching one of the created zygote genotypes.

• If any child has none of these zygote genotypes among his or her current list

of genotypes-in other words, is incompatible with the current parental pair of

genotypes-take no action to save any genotypes.

(b) For each person in the nuclear family, exclude any genotypes not saved during step

2.a above.

3. Repeat part 2 until no more genotypes can be excluded.

4.4.2 Examples for Elston-Stewart Algorithm

Figure 4.1 shows a simple nuclear family, constituted of two parents and a child. As can be

seen, the phenotypes for mother and child are AB and Ab respectively. If we infer the father’s
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Person Genotypes Genotypes

Father AABB, AABb, AAbb, AaBB, AaBb,Aabb, aaBB, aaBb, aabb 9

Mother AaBb,AABB,AaBB,AABb 4

Child Aabb,AAbb 2

Table 4.4: All 72 possibilities for 2 loci to consider

Person Genotypes Genotypes

Father AABb,AaBb,AAbb, Aabb, aabb, aaBb 6

Mother AABb, AaBb 2

Child AAbb,Aabb 2

Table 4.5: 24 possibilities based on the algorithm.

genotype from top to bottom, we have to consider all 16 possible genotypes. However, if we

consider the situation from bottom to up, we can infer immediately the possible genotypes for

father could not be AABB, AaBB or aaBB. We can give this procedure in Table 4.4 and

Table 4.5. This is the basic nuclear family and 2 loci would be the simplest situation taking

recombination into consideration.

Figure 4.1: A simple example in illustrating likelihood calculation

Let’s see a complicated one, an example for blood type for human beings in Figure 4.2.

In Table 4.6 and Table 4.7 we give potential genotype sets and their sizes based on iteration

over all genotypes for the 9 individuals according to the 3 ABO alleles is 69 = 10077696,

which is a fairly large set! While conditional on phenotype, we find that the calculation could
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Figure 4.2: A pedigree Partially Typed at the ABO locus

Person Genotype Genotype

I − 1 AA,AO,BB,BO, AB, OO 6

I − 2 OO 1

II − 1 AA,AO,BB,BO, AB, OO 6

II − 2 AA,AO 2

II − 3 AA,AO 2

II − 4 AA,AO 2

III − 1 AA,AO 2

III − 2 AB 1

III − 3 AA,AO 2

Table 4.6: 1152 possibilities to consider

be accelerated remarkably. This example shows a big advantage of using the Elston-Stewart

algorithm in a pedigree.

There is a classic software called LINKAGE which implements the Elston-Stewart algo-

rithm in it. We implement the Elston-Stewart algorithm in C programming language and give

examples to illustrate it.

Take a single nuclear family as an example. Suppose that we have a segment of gene

from a child and the parents’ genetic segments. We want to calculate the probability of getting

such a child’s gene based on the parental genetic segments. Because our data is concatenation
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Person Genotype Genotype

I − 1 AA,AO, AB 3

I − 2 OO 1

II − 1 BO,AB 2

II − 2 AO 1

II − 3 AO 1

II − 4 AA,AO 2

III − 1 AA,AO 2

III − 2 AB 1

III − 3 AA,AO 2

Table 4.7: 48 possibilities based on the algorithm

of several chromosomes, the ”recombination” probability between neighboring loci that belong

to different chromosomes becomes the probability of starting the copying of one chromosome

from the opposite lineage (i.e. paternal instead of maternal or maternal instead of paternal) of the

lineage we finished copying the other chromosome from. These are believed to be independent,

so here the ‘recombination’ probability should be 0.5. Then we consider the child’s following

locus: if this gene is not from the same chromosome as the previous one, i.e there is no cross

over, then we multiply 0.5 by a recombination rate, r, between these two loci; otherwise we

multiply 0.5 by (1−r). Notice that there are some situations in which the existing child’s genetic

segment can choose from both parental chromosomes, which is to say the parent is homozygote

at this locus, we need to sum both recombinant and non-recombinant situation based on the last

locus; we will illustrate this procedure in the flow chart below. In order to mark the source

of each allele in the child’s segments, we use an indicated variable. An indicated variable is a

binary variable takes 1 or 0, where 1 denotes there is a recombination and 0 indicates there is no

recombination.

Another problem arises: how do we know the origins of each chromosome from the child.

Actually we don’t know so we have to think thoroughly to make sure all situations are consid-

ered. Let’s call the probability we get above triplet(Gc,Gm), so the probability based on this
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Figure 4.3: How the Elston-Stewart algorithm goes through the loci; achieved segment been

marked as ABCDe

nuclear family becomes:

Prob = 0.5 ∗ (triplet(Gc1 , Gm) ∗ triplet(Gc2 , Gf ) + triplet(Gc2 , Gm) ∗ triplet(Gc1 , Gf ))

Prior probability is another important thing. This is to define the probability in getting

such a pair of parents. Suppose equally frequency, 0.5, for each allelic type so that we have

half chance to observe recessive or dominant in a locus from the population. In this situation

non-informative priors are better choices and we consider uniform prior in a discrete sample

space. Suppose there are N loci, then the sample space has exactly 22N available sample points,

so we take the prior probability to be 1/22N .

We could describe the crossover process in a mimic way, using a sketch map in Figure 4.4.

From this flow chart we easily see that the Elston-Stewart algorithm performs badly when

there are many loci, say, 20; because it scales exponentially in the number of loci, the time

complexity should be O(2n).
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Figure 4.4: Generation of a child’s chromosome. The crosses within mother’s chromosomes

mean there are recombinant events happened.

4.5 Lander-Green Algorithm

There are other algorithms which are widely used as well and the famous one is the Lander-

Green algorithm proposed in 1987. Even with complete phenotyping of all pedigree members,

phase ambiguities pose a problem. Lander and Green took a different approach. They redefine

the likelihood expression so that the sums extend over loci rather than people. In other words,

their algorithm steps through the likelihood calculation locus by locus while considering all

people simultaneously at each locus.

Although there are some speedups, very large pedigrees are simply beyond the reach of the

Lander-Green algorithm. Above all, there is no such an algorithm that could search the pedigree

linearly both in the number of members and the number of loci. The Lander-Green algorithm

is another approach for getting the pedigree likelihood. It scales linearly in the number of loci.

Since all pedigree members are taken simultaneously, it scales exponentially in the number of

individuals.

Since the method of Lander and Green shifts summations from people to loci so it is

possible to decompose on both people and loci in such a manner that the prior, penetrance, and

transmission arrays factor. This suggestion entails viewing the multilocus ordered genotypes
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of a given person as originating from a Cartesian product of his or her single-locus ordered

genotypes. A negative consequence of this synthesis is the substitution of a swarm of small

arrays where a few large ones formerly sufficed. In compensation for this complication is the

potential benefit of encountering much smaller initial and intermediate arrays in the likelihood

calculation.

That is to say that the probability of observing the allele v at locus k + 1, given the alleles

at locus k, is independent of either the value of the alleles or the genotype at any locus to the

left of locus k. This Markov property could be used in the Lander-Green algorithm and yields a

transformed Markov Model, the Hidden Markov Model (HMM). HMM is a statistical model in

which the system being medelled is assumed to be a Markov process with unknown parameters,

and the challenge is to determine the hidden parameters from the observable parameters. The

extracted model parameters can then be used to perform further analysis.

In a regular Markov model, the state is directly visible to the observer, and therefore the

state transition probabilities are the only parameters. In an HMM, the state is not directly visible,

but variables influenced by the state are visible. Each state has a probability distribution over

the possible output tokens. Therefore the sequence of tokens generated by an HMM gives some

information about the sequence of states. A quite straightforward way in explaining the HMM

is shown in Figure 4.5.

Figure 4.5: HMM used in the likelihood calculation.

In order to differ Lander-Green algorithm from Elston-Stewart algorithm, we will use an-

other group of notations to calculate the likelihood. As shown above, there are three com-

ponents in the likelihood calculation based on Lander-Green algorithm: one ingredient is the
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observed genotype Xi for each locus; a second ingredient will be the possible allele at each

locus, P (Xj |Ij); the final ingredient connect the allele along the chromosome, P (Ij+1|Ij). I

variables represent the ”inheritance variable”. We only consider multi point phase under full

penetrance and later all genotypes given in our examples are given based on chromosome.

Like a general Markov Chain, finding the transition matrix is of key point. In order to

get the transition probability, recall the transition matrix in Markov Chain. A two-state Markov

Chain (Xt) t = 0, 1...has transition matrix: P=


 1− α β

β 1− α




From the property of Markov Chain, we have: Pn+1 = PnP . Here we change the entries

in the matrix into recombination fraction, so with one meiosis, our transition matrix is:

T=


 1− θ θ

θ 1− θ




Meiosis is important in the Lander-Green algorithm since it’s the basic calculating unit in

the formula. With two meiosis,the transition matrix is:

T⊗2=


 (1− θ)T θT

θT (1− θ)T


 =




(1− θ)2 (1− θ)θ (1− θ)θ θ2

(1− θ)θ (1− θ)2 θ2 (1− θ)θ

(1− θ)θ θ2 (1− θ)2 (1− θ)θ

θ2 (1− θ)θ (1− θ)θ (1− θ)2




The recursive formulation for n meiosis is:

T⊗n=


 (1− θ)T⊗(n−1) θT⊗(n−1)

θT⊗(n−1) (1− θ)T⊗(n−1)




In general, the transition matrix is patterned and the transition probability depends on two

things: one is the number of meiosis that were outcome changed; the other is the number of

meiosis that were outcome did not change. The entries in the transition matrix are the products

of powers of θ and 1− θ. The size of the transition matrix is 2n × 2n for n meiosis, i.e n triples

which are quite large. The formula for likelihood calculation in Lander-Green algorithms is as

follows:

L =
∑

I1

. . .
∑

Im

P(I1)
m∏

i=2

P(Ii|Ii − 1)
m∏

i=1

P(Gi|Ii) (4.3)
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where P (I1) is the prior probability of allelic states along the chromosome; P (Gi|Ii) is the

probability of observed genotypes, given the allelic states; and P (Ii−1|Ii) is the model for

transitions along chromosome to the allelic states, which depends on the recombination fraction.

It combines with Bayesian theory so that it can estimate probability of each allelic state at each

locus. Generally it is quite slow unless there are few loci, but Lander-Green algorithm can scale

the pedigree in a linear time according to the number of loci.

4.5.1 Flow of Lander-Green Algorithm

This is the Lander-Green Algorithm:

1. Enumerate all possible ”inheritance vectors” in the input pedigree given n non-founders.

This is done by listing all meiosis in the pedigree: there should be 2n meiosis for n

non-founders (each non-founder has two parents so n non-founders implies 2n meiosis);

2. Iterate over inheritance vectors and markers to calculate the probability of the observed

genotypes for each marker conditioned on a particular inheritance vector: P (Xi|Ii). This

is done using the ”genetic descendant graph”, as introduced in the previous chapter. List

all possible IBD patterns: total of 22n possible patterns defined by setting each meiosis

to one of two possible outcomes;

3. Build transition matrix for moving along chromosome: patterned matrix, built from ma-

trices for individual meioses;

T⊗n=


 (1− θ)T⊗(n−1) θT⊗(n−1)

θT⊗(n−1) (1− θ)T⊗(n−1)




4. Run the Markov chain: start at first marker, m = 1 and then build a vector listing

P (Gfirstmarker|I) for each I; move along chromosome and then multiply vector by tran-

sition matrix combined with information at the next marker; also multiply each compo-

nent of the vector by P (Gcurrentmarker|I). Repeat previous two steps until done.

An obvious advantage of Lander-Green algorithm is that it could be implemented from

wherever from the chromosome based on the Markov property: such as forward recurrence,

backward recurrence or even arbitrary location. Since all the genotypes are known, we could

eliminate the terms where P (Gi|Ii) are all 1. As mentioned before, the Lander-Green algorithm
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Sib1 Sib2

Locus A 1/1 2/2

Locus B 1/1 1/1

Table 4.8: A basic example in Lander-Green algorithm

I1 I2 P(I1) P(I2|I1) P(X1|I1) P(X2|I2) L

0 0 0.25 0.67 0.0625 0.0625 0.00067

0 1 0.25 0.30 0.0625 0.125 0.00058

0 2 0.25 0.03 0.0625 0.25 0.00013

1 0 0.5 0.15 0 0.0625 0.00000

1 1 0.5 0.70 0 0.125 0.00000

1 2 0.5 0.15 0 0.25 0.00000

2 0 0.25 0.03 0 0.0625 0.00000

2 1 0.25 0.30 0 0.125 0.00000

2 2 0.25 0.67 0 0.25 0.00000

Table 4.9: Output of Lander-Green algorithm for two siblings under Hardy equilibrium

searches the pedigree locus by locus so for each marker in an offspring, the algorithm searches

throughout his ancestors and produce a possible inheritance vector.

Now let’s see some examples based on Lander-Green algorithm. First of all we introduce

a definition called IBD which stands for identical by descend. It means that two alleles have

a common ancestor before the start of the population. This is the underlying sharing of chro-

mosomes segregating within a family, e.g the siblings sharing 0, 1 or 2 alleles, with probability

0.25, 0.5 and 0.25 respectively. The following example considers two loci separated by recom-

bination fraction, θ = 0.1; and each locus has two alleles, both with frequency 0.5, the prior

probability.

Suppose the two siblings have the genotypes shown in Table 4.8.

Consider the Lander-Green algorithm, we obtain the Table 4.9 of the probability of IBD =

2 at marker B when we consider B alone and consider both markers simultaneously.
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4.6 Comparison between Elston-Stewart Algorithm and Lander-

Green Algorithm

Now we could give a comprehensive comparison between the Lander-Green algorithm and

the Elston-Stewart algorithm. They are both for multi-point analysis and very good choices in re-

searching pedigree data. The running time for Lander-Green algorithm is of the order O(m24m),

where m is the number of loci under investigation and n is the number of nonfounders. Later

Elston and Indury improved the algorithm and their version runs in time mn2n−2.

The major difference between the two algorithms is the complexity.The complexity of the

Elston-Stewart algorithm scales exponentially in the number of loci and linearly in the num-

ber of people, and the Lander-Green algorithm scales exponentially in the number of people

and linearly in the number of loci. There are also differences in the types of analysis each can

handle. In general, the Elston-Stewart algorithm is more flexible in the models since it uses

multilocus genotypes. On the other hand, the Lander-Green algorithm uses an HMM that com-

putes the likelihood adding a single locus at a time making it more difficult to handle haplotype

frequencies and adding multilocus models increases the computational complexity significantly.

In respect of the missing data, the Lander-Green algorithm is preferable.

4.7 The Incremental Algorithm

The incremental algorithm is an algorithm for computing the convex hull of a set of points

in two or more dimensions. The basic idea is to add points one at a time updating the hull

as we proceed. In the linkage analysis, the incremental algorithm could be used to get the

likelihood from a contrasting pedigree. We can construct a contrasting pedigree to a pedigree

under research by adding some individuals into the pedigree or changing some information such

as some genotypes. We focus on a special situation in which all genotypes are known for each

individuals in the pedigree.

Each time we insert some new member or change some genotypes, we update the likeli-

hood we already got by changing it ’locally’. First of all we save the probabilities triple by triple,
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which is to say we store each of them in a ’family space’ instead of as a apart of the whole pedi-

gree; then label the individuals which are directly dependent to the new insert and identify them

as triples, if there is a ’half-family’ inside our labeled individuals we update this ’half-family’

by adding another triplet ancestor to it: for example if the mother and son are taken then we just

add the father; finally we update those labeled individuals triple by triple and multiply them by

the ’untouched’ ones.

The genotype networks are used in the incremental algorithm. Let’s take Figure 3.3 as an

example. If we change the genotype for individual 5, the update issues are done to families 3,

5, 10 and 5, 8, 12. On the other hand if we insert a sibling for 3, we update the likelihood by

multiplying it by a probability for the ancestor 1 and 2 to get such a sibling.

4.8 Simulations

4.8.1 Simulation Based on the Elston Stewart Algorithm

In this part we implement the Elston-Stewart algorithm and the Lander Green algorithm

and use them to calculate the probability of the data giving the pedigree, which is used as the

’likelihood’ of the pedigree. Simulations for the incremental algorithm is given in the form of

comparison two pedigrees’ likelihood. The incremental algorithm is a better way in choosing

a more ’probable’ pedigree since it only accounts for the variety. All simulations used in this

work are based on specified sequence, which is to say the genotype is fully observed not only

for each allelic type but also the alleles’ positions are known.

We try some typical cases under 2 loci and get their probabilities respectively based on

the Elston-Stewart algorithm. Since 2 loci, simple nuclear family is the fundamental thing we

have to be familiar and confident with. On the other hand, exhaustive algorithm is an option

in proving the result from the Elston-Stewart algorithm. The exhaustive algorithm is used here

to prove the results based on the Elston-Stewart algorithm and we are happy to find the results

match with each other.

We find that the exhaustive algorithm is powerless in dealing with situations which have

a large number of loci; if we have n loci, we have to consider all 22n possible genotypes and
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calculate 16n422n times in order to get the likelihood in a triple. To the number of member in

the pedigree, it scales polynomially, much worse than Elston-Stewart algorithm.

4.8.2 Examples

• Given the child’s and parents’ genotypes, shown in Figure 4.6, calculate the likelihood for

this pedigree. We take discrete uniform distribution with each allele with frequency 0.5 as

the prior probability. This is the general prior probability we choose unless otherwise de-

clared. Alleles in the same row are in the same chromosome. Unless otherwise specified,

all recombination rates are taken as 0.25.

Figure 4.6: Single nuclear family, 2 loci

According to the Equation 4.2 The corresponding likelihood based on the pedigree is

9.7656× 10−4.

• Given parents genotypes, we want all children’s genotypes and their corresponding prob-

abilities, as shown in Figure 4.10:

We get an output table, shown in Table 4.10
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Figure 4.7: Generating all possible children.

Genotypes Likelihood

AABb 1.4648× 10−3

AaBb 9.7656× 10−4

AAbb 9.7656× 10−4

Aabb 1.4648× 10−3

Table 4.10: Possible offsprings for the parents. Note that the maternal haplotype must be

Ab since mother is homozygous in both loci.

If we consider this case under original Mendelian Model, which is under the assumption

of independent heredity, we will get the four genotypes equally with probability 0.25.

• Figure for this example is like the one we illustrated above in Figure 4.6, the nuclear

family style. Now we change the situation: only the mother and child’s genotypes are

known. There is a ’switch’ which can give us two approaches in leading to it: one is by

calculating the possibility for each haplotype obtained from mother then sum them and

dividing the result by 2; the other way is complicated: we have to generate all possible

genotypes for the father and then calculate them in turn. Although it is not easy, the

advantage is that we can have every genotype with its corresponding likelihood. We will

explain how to inference father’s genotypes’ space later. The result is 1.9531× 10−3.
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• Given a pedigree consisting of three generations (like Figure 4.8): grandparents in the

father’s side, parents, and one child. The recombination rate is 0.186 and the father’s

genotype is missing.

Figure 4.8: 3-generation pedigree, 2 loci.

We want to get the likelihood for this pedigree. Thinking from the grandparents, we get 4

genotypes with equal probabilities; while considering from the bottom, we find that only

one genotype is possible in this pedigree. The probability for getting such a child from

the data based on the pedigree is 5.6763× 10−6.

• Take Figure 4.8 as another example in which we remove grandfather’s genotype. In this

situation two people are ’missing’ and we peel the pedigree from the bottom to the top

and each time we inference some potential genotypes for the missing data, i.e peel the

bottom family first. The calculated result is 1.2813× 10−3.

• For a two generation pedigree with more than 1 child and unknown father’s genotype, for

example in Figure 4.9, the probability is 5.1997× 10−4.

• The last thing we concerned based on 2 loci is three generation with several offsprings in

the bottom. Parental genotypes are given in Figure 4.10.

The likelihood for this pedigree is 0.

More complicated examples are given: more members, more loci.
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Figure 4.9: Single nuclear family, 3 children, 2 loci

1. Consider a pedigree shown in Figure 4.11. This is an example based on 6 loci, 5 individ-

uals with missing data at locus 5 from the paternal side and at locus 6 from the maternal

gene. In this situation we sum up all the possible genotypes for the missing position and

consider that some allelic combinations are not suitable in this situation: it is impossible

for the father to hold 2 dominant alleles at locus 5. If we consider discrete uniform dis-

tribution with equal frequency for each allelic type, we assign each entry with a weight

1/212. The likelihood based on this situation is 6.1483× 10−16.

2. Another example is a larger pedigree shown in Figure 4.2 with genotypes observed for

all the individuals in the pedigree. Their observed genotypes are given in Table 4.11, the

recombination vector is r = (0.23, 0.15, 0.18, 0.35, 0.27, 0, 32). The final likelihood we

get is 8.4382× 10−22.

3. We can not only deal with the situation with partial missing value but also situations in

which a person’s genotype is totally unknown. Take Figure 4.12 as an example and in this

situations the likelihood is 1.2207× 10−4.

4. In this example, we use incremental algorithm to compare two pedigree. We emphasize

again the ’likelihood’ used throughout this work is an expression as ’the probability of the

data given the pedigree’. Refer to the aspect of ’likelihood’, we need some benchmark,

or another model to compare and according to certain indices we can tell which pedigree

is more likely to happen. Suppose a special situation within which the haplotype’s prior
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Figure 4.10: 3-generation pedigree with some missing data.

probability for the founder is P (0, 0...0) = P (1, 1...1) = 0.5, which is to say for each

founder, all the alleles in a chromosome are either recessive or dominant and no mixture.

In the pedigree comparison, we want to get the likelihood for getting a particular child

based on two pedigree: one is a nuclear family with the parents as the founders while

the other is a three generation pedigree in which the grandparents and the father are the

founders. Like the hypothesis test in the statistics, we express this problem in Figure 4.13.

The only observed genotype is from the child, whose gene sequence is 1010/0110 on each

chromosome. Suppose the recombination rate vector is r = (0.25, 0.35, 0.18). Results

are shown in Table 4.12.

We can see that in this situation, the second pedigree will have a higher probability, which

means it is more likely to produce such a child in a 3-generation pedigree under which

there is enough time for each chromosome to get ’mixed’. We can’t simply compare

the result here with the previous examples since the assumptions for the priors are quite

different.

5. In the last example the incremental algorithm is used again to get the likelihood for two

pedigrees. The pedigree is like the one we use in Figure 3.3 with the corresponding

46



Person Genotype

I-1 1100101/0101011

I-2 1010010/1100101

II-1 1011001/0111101

II-2 1101111/1000010

II-3 0101111/1010101

II-4 1101101/0011000

III-1 1011001/1101111

III-2 0011001/1101010

III-3 0101101/0001000

Table 4.11: Example based on the previous blood type figure. Digits lying on the same side

along the forward slash denote the alleles in the same chromosome.

Pedigree 1 Pedigree 2

Likelihood 5.6× 10−5 3.5156× 10−4

Table 4.12: Results for Figure 4.13
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Figure 4.11: A two-generation pedigree consists of 5 members.

genotypes listed in Table 4.13.

The recombination rate r is r = (0.125, 0.18, 0.25, 0.35). The likelihood for this pedigree

based on these genotypes is 6.5408 × 10−30. Imagine that we change 5’s genotype into

01111/11010 and the updated likelihood based on the incremental algorithm is 6.1041×
10−30. The first situation is more likely to be happened but not significantly.

For the Lander-Green algorithm we run the same example and we are happy that both

programmes perform excellent and the results are the same as shown.

4.9 Generating Genotypes in a Pedigree

Suppose a nuclear family with unknown father’s genotype. We name the child’s two chro-

mosome 1 and 2. Suppose 1 is from the maternal side and 2 is from the paternal side, or vice

versa. First judgements are given to see if it is possible for the mother to give an egg with such

haplotype. Imagine that 1 could be given by mother, label it as 1′ and delete it. Now here comes

the trick: the father has to pass a sperm with the haplotype which is the same as 2, possibly

with recombination to his son. In the next step we will generate some possible father’s genotype
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Figure 4.12: More loci with missing data.

forms, in mathematics they are just some n× 2 matrices with n being the number of loci.

In order to get the possible father’s genotypes, we first assign each term in 2 chromosome

to each row in a 2 × n matrix. Since there are 2n potential sequences for the chromosome 2

so in this step we get 2n matrices, while in each matrix, there are n empty seats so there are

another 2n-allele combinations for it. Thus in the end, for the father we can generate a series of

22n genotype’s matrices for the father.

This is used mainly in the Elston-Stewart algorithm and indeed we use the same way in

generating genotypes for the missing data in the Lander-Green algorithm.
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Figure 4.13: Comparison of the likelihood based on two pedigree to see which is more suitable.

Individual Genotype

1 11010/01110

2 11001/00101

3 11010/01001

4 11111/01011

5 01000/10010

6 00001/11111

7 01011/11000

8 10011/01010

9 11110/00001

10 10010/01111

11 10000/01001

12 10001/10010

Table 4.13: Genotypes for the members in pedigree shown in Figure 3.3
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Chapter 5

Conclusion

We have illustrated several methods for the linkage analysis based on calculating the like-

lihood of the data giving a pedigree. Notice that this is sometimes not the real situation so

contrasts are suggested in identifying pedigrees. While in this situation, the incremental algo-

rithm helps us to simplify the calculation so that we don’t have to repeat doing what we have

already done and needn’t change. We have studied the two main algorithms in use currently:

the Elston-Stewart algorithm and the Lander-Green algorithm. The exhaustive algorithm is used

to validate their results. We compared them in many ways such as the time complexity and the

algorithm principle. We have presented also some usages of the algorithms, and a method to gen-

erate unknown data based on Elston-Stewart algorithm. It focuses on using a haplotype from the

unknown person’s offspring to generate a sample space for the person. Then we search through

the whole sample space by either the Elston-Stewart algorithm or Lander-Green algorithm to

get the probability based on each situation. If we treat different possible situation as different

pedigree, the probability we get becomes the likelihood and by comparing the likelihood we

infer the pedigree with a larger probability would be a more possible one. The comparison of

the likelihood is purely mathematical comparison.

Based on the simulated examples, we find the following properties for the likelihood based

on a pedigree:

• The likelihood for a pedigree decreases with the number of the individuals in the last

generation, i.e the more people we have at the bottom, the lower the probability will be;
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while if founders are induced, it is hard to say how the likelihood will be;

• The more loci we have, the lower the likelihood is no matter what the recombination rates

are. No doubt we are the children of fortune among the war in mother’s womb!

• As can be seen from the formulation for the likelihood calculation, the prior is an im-

portant factor we should take into account. For example in the early examples we take

uniform priors while in the last one a special prior is used so the likelihood is incompara-

ble if the priors are different.

Characteristics of each algorithm become obvious when we simulate the pedigrees in the

two algorithms. The Elston-Stewart algorithm keeps on peeling families off and gets the sum-

mation over persons. So the number of individuals is not a problems in this algorithm. While

the Lander-Green algorithm searches through each locus over all the pedigree in turn and keeps

on tracking back until get the first founders for the locus. The simulations show the Elston-

Algorithm performs well under huge pedigree while poor in the number of loci, even 20 is too

large for it. Quite opposite, the Lander-Green algorithm, although with several enhancements,

works perfect in a pedigree with millions of loci but number of individuals is a limitation and

even a 10 persons pedigree can lead it to a serious situation.

We have explained the usage of graphical models and probability networks in the linkage

analysis. They can be used in formulating, analyzing and visualizing many problems in genetics,

or problems having a strong genetic component. The merits of phrasing these problems in the

language of graphical models derive from the flexibility with which standard problems can be

modified to accommodate special situations, whether they be observational schemes, types of

problem under consideration or other external circumstances that need to be incorporated into

the basic genetic models [6]. So analysis of complex genetic data can benefit enormously from

current rapid developments in the area of graphical models and computers.

There are several directions in which the analysis could be extended. One is through

Bayesian estimation procedure to give some benchmarks with which we can compare our results

since the results we get are not straightforward in telling whether this is the real pedigree or not:

we can’t compare it with 1 or other constance since under certain situations the likelihood tends

to be infinite, for example in a pedigree with loop. Another approach is using genome-wide
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genetic data to reconstruct the entire pedigree that connects a set of individuals from the same

population or species (Hein, 2004). In this way, we can pick the ”most probable” pedigree

among all possible ones and research the pattern of inheritance based on this pedigree since in

some circumstances this can be seen as the ”real” pedigree. The most attractive direction for us

should be the incremental algorithm and how to accelerate them. We are aiming to find a better

algorithm that can be used in fairly large pedigree and performs ideally in the increasing number

of loci and individuals. Accompany the algorithms with Bayesian estimation will undoubtedly

lead us to an attractive world.
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