Summation of Series

To find the sums of type $\sum_{n\in\mathbb{Z}} f(n)$ and $\sum_{n\in\mathbb{Z}} (-1)^n f(n)$ we apply the *Residue Theorem* which is done by means of the following Proposition:

Proposition 1 Let f be holomorphic on \mathbb{C} except for finitely many points $a_1, a_2, ..., a_k$, none of which is an integer (real). Suppose that there exists M > 0 such that $|z^2 f(z)| \leq M$ for all |z| > R for some R. Let

$$g(z) = \pi \frac{\cos \pi z}{\sin \pi z} f(z)$$
 and $h(z) = \frac{\pi}{\sin \pi z} f(z)$ for all z.

Then

$$\sum_{n=-\infty}^{\infty} f(n) = -\sum_{j=1}^{k} \operatorname{Res}(g, a_j) \quad \text{ and } \quad \sum_{n=-\infty}^{\infty} \left(-1\right)^n f(n) = -\sum_{j=1}^{k} \operatorname{Res}(h, a_j).$$

Proof. Note that $\sin \pi z = 0$ at each $n \in \mathbb{Z}$ and by hypothesis f is holomorphic at each n. Consider two cases:

Case (i): Let $f(n) \neq 0$ for each n. Then both the functions g and h have simple poles at each $n \in \mathbb{Z}$ and the singularities at $a_1, a_2, ..., a_k$. Let us consider a large rectangle not passing through any integer and containing all singularites $a_1, a_2, ..., a_k$ of f and the integers -n, ..., -2, -1, 0, 1, 2, ..., n. Then such rectangle may be the square with vertices $\pm \left(n + \frac{1}{2}\right) \pm i \left(n + \frac{1}{2}\right)$ for large n so that $|a_j| < n$ and that square we denote by S_n . Hence, by Residue Theorem

$$\int_{S_n} g(z) dz = \sum_{j=1}^{k} (\text{Residue of } g \text{ at singularities inside } S_n)$$
$$= \sum_{j=1}^{k} \text{Res}(g, a_j) + \sum_{m=-n}^{n} \text{Res}(g, m).$$

Now, since g has a simple pole at each m,

$$\operatorname{Res}(g,m) = \lim_{z \to m} (z - m) g(z) = \lim_{z \to m} \pi \frac{z - m}{\sin \pi z} \cos \pi z \ f(z)$$
$$= \pi \left(\lim_{z \to m} \frac{z - m}{\sin \pi z} \right) \cdot \cos \pi m \ f(m) = f(m).$$

Hence,

$$\int_{S_n} g(z) dz = \sum_{j=1}^k \text{Res}(g, a_j) + \sum_{m=-n}^n f(m).$$

Similarly, we have

$$\operatorname{Res}(h,m) = \lim_{z \to m} (z - m) h(z) = \lim_{z \to m} \pi \frac{z - m}{\sin \pi z} f(z)$$
$$= \pi \left(\lim_{z \to m} \frac{z - m}{\sin \pi z} \right) \cdot f(m) = (-1)^m f(m)$$

as $\cos \pi m = (-1)^m$ and

$$\int_{S_n} h(z) dz = \sum_{j=1}^k \text{Res}(h, a_j) + \sum_{m=-n}^n (-1)^m f(m).$$

Case (ii): If f(m) = 0 for some m, then g and h have removable singularities at such m and can be taken to be holomorphic there. Hence, in this case also, we have

$$\int_{S_n} g(z)dz = \sum_{j=1}^k \operatorname{Res}(g, a_j) + \sum_{m=-n}^n f(m)$$

and

$$\int_{S_n} h(z) dz = \sum_{j=1}^k \text{Res}(h, a_j) + \sum_{m=-n}^n (-1)^m f(m).$$

Now, we only need to show that

$$\lim_{n \to \infty} \int_{S_n} g(z) dz = 0 = \lim_{n \to \infty} \int_{S_n} h(z) dz.$$

We have

$$\left| \int_{S_n} g(z) \mathrm{d}z \right| \leq \pi \int_{S_n} \left| \frac{\cos \pi z}{\sin \pi z} \right| \cdot |f(z)| \, |dz|$$

and

$$\left| \int_{S_n} h(z) dz \right| \le \pi \int_{S_n} \frac{1}{\left| \sin \pi z \right|} \cdot \left| f(z) \right| \left| dz \right|,$$

where by hypothesis, we have for any $z \in S_n$, |z| > n for large n, $|f(z)| \le \frac{M}{|z|^2} < \frac{M}{n^2}$. With the use of the results (which may easily be proved): that for any $z \in S_n$, |z| > n,

$$\left| \frac{\cos \pi z}{\sin \pi z} \right| \le A \text{ for some } A > 0$$

and

$$\left| \frac{1}{\sin \pi z} \right| \le B \text{ for some } B > 0,$$

we obtain

$$\left| \int_{S_n} g(z) \mathrm{d}z \right| \leq \frac{\pi AM}{n^2} \cdot 4 \left(2n + 1 \right) \to 0 \text{ as } n \to \infty.$$

Similarly, $\left| \int_{S_n} h(z) dz \right| \to 0$ as $n \to \infty$. This proves the Proposition.

Remark 1 If f has singularities at some integer (real) the Proposition above can still be applied. That integer will be excluded from the sum $\sum_{m=-n}^{n}$ and the residue at that integer will be included in the sum $\sum_{j=1}^{k}$.

Example 1 Show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Solution 1 Consider the function $f(z) = \frac{1}{z^2}$ which has double pole at z = 0 and no other singularity (there is no a_j). Hence, $g(z) = \frac{\pi}{z^2} \frac{\cos \pi z}{\sin \pi z} = \frac{\pi \cot \pi z}{z^2}$ has a pole of order 3 at z = 0 and simple poles at all other integers. The Laurent expansion of $\cot \pi z$ at z = 0 is given by

$$\cot \pi z = \frac{1}{\pi z} - \frac{\pi z}{3} + \dots$$

and hence, the Laurent expansion of g(z) at z = 0 is given by

$$g(z) = \frac{1}{z^3} - \frac{\pi^2}{3} \cdot \frac{1}{z} + \dots$$

which shows that $Res(g(z),0) = -\frac{\pi^2}{3}$. Thus in view of the above Remark

$$\sum_{n \neq 0} \frac{1}{n^2} = 2 \sum_{n=1}^{\infty} \frac{1}{n^2} = -Res\left(g(z), 0\right)$$

which proves that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{2} \left(-Res(g(z), 0) \right) = \frac{\pi^2}{6}.$$

Example 2 Show that, for a > 0 and not an integer,

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2} = -\frac{1}{2a^2} + \frac{\pi}{2a} \coth \pi a.$$

(ii)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 + a^2} = \frac{1}{2a^2} - \frac{\pi}{2a \sinh \pi a}.$$

Solution 2 Consider the function $f(z) = \frac{1}{z^2+a^2}$ which has simple poles at $z = \pm ai$. Hence, by Proposition 1,

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + a^2} = -Res(g, ai) - Res(g, -ai),$$

where

$$g(z) = \frac{\pi}{z^2 + a^2} \cot \pi z.$$

Clearly,

$$Res(g, ai) = \lim_{z \to ai} (z - ai) \frac{\pi}{(z - ai)(z + ai)} \cot \pi z$$
$$= \frac{\pi}{2ai} \cot \pi ai = -\frac{\pi}{2a} \coth \pi a$$

and

$$Res(g, -ai) = \lim_{z \to -ai} (z + ai) \frac{\pi}{(z - ai)(z + ai)} \cot \pi z$$
$$= \frac{\pi}{2ai} \cot \pi ai = -\frac{\pi}{2a} \coth \pi a.$$

Thus

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + a^2} = 2\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2} + \frac{1}{a^2} = \frac{\pi}{a} \coth \pi a$$

which proves the result (i). To prove the result (ii), we have by Proposition 1,

$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{n^2 + a^2} = -Res\left(h, ai\right) - Res\left(h, -ai\right),$$

where

$$h(z) = \frac{\pi}{z^2 + a^2} \frac{1}{\sinh \pi z}$$

and

$$Res(h, ai) = -\frac{\pi}{2a} \frac{1}{\sinh \pi a}, \quad Res(h, -ai) = -\frac{\pi}{2a} \frac{1}{\sinh \pi a}.$$

hus

$$\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{n^2 + a^2} = 2\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + a^2} + \frac{1}{a^2} = \frac{\pi}{a} \frac{1}{\sinh \pi a}$$

which gives

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + a^2} = -\frac{1}{2a^2} + \frac{\pi}{2a} \frac{1}{\sinh \pi a}$$

and this leads the result (ii).

Example 3 Show that, for a > 0 and not an integer,

(i)
$$\sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^2} = \frac{\pi^2}{\sin^2 \pi a}.$$

(ii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+a)^2} = \frac{\pi^2 \cos \pi a}{\sin^2 \pi a}.$$

Solution 3 Consider the function $f(z) = \frac{1}{(n+a)^2}$ which has double pole at z = -a. Hence, by Proposition 1,

$$\sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^2} = -Res(g, -a),$$

where

$$g(z) = \frac{\pi}{(n+a)^2} \cot \pi z$$

and

$$Res(g, -a) = \lim_{z \to -ai} (\pi \cot \pi z)'$$
$$= -\frac{\pi^2}{(\sinh \pi a)^2}$$

hence, the result. Similarly, result (ii) may be obtained.