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Propositions

» Proposition A statement that is either true or false but not
both is called a proposition.

» Examples of propositions —
“l+1=2""---True
“l+1>3"---False

“Singapore 1s in Europe.” - - - False

» Examples (which are not propositions)
“l+1>x"- - x

“What a great book!” . . . X

“Is Singapore in Asia?” .. .X

EXAMPLE: We know what sentences are (I hope):
1. John is going to the store.
2. That guy Is going to the store.
3. John, go to the store.
4. Did John go to the store?

« Declarative sentences are propositions.




1. i.e. Sentences that assert a fact that could either be
true or false.

2. 1.e. Something you could make into a question.

3. Of the above, only (1) is a proposition as it is: we
need all the details.

4. (2) would be a proposition if we knew who “that
guy” is.

« Above, (3) is a command: it's not true or false.
* (4) is a question, so definitely not a statement.

EXAMPLE: There are statements in math like “10—4=6 and
“1+1=3".

One of those is true and one is false, but they are both
propositions.



Propositional logic
* Proposition : A proposition 1s classified as a declarative
sentence which 1s either true or false.
eg: 1) It rained yesterday.
* Propositional symbols/variables: P, Q. S, ... (atomic
sentences)
* Sentences are combined by Connectives:
A ..and [conjunction]
V ...0r
—> ._.implies

[disjunction]|

[implication / conditional]
< .is equivalent  [biconditional]
=1 ...not [

negation]

* Literal: atomic sentence or negated atomic sentence

Propositional logic (PL)
Sentence or well formed formula

* A sentence (well formed formula) 1s defined as follows:

— A symbol is a sentence
— If S 1s a sentence, then —S 1s a sentence

— If S 1s a sentence, then (S) is a sentence

— If S and T are sentences, then (S v T). (SAT).(S— T), and (S < T) are
sentences

— A sentence results from a finite number of applications of the above rules

Logic Basics
A proposition can be negated.

« Thatis, if p is true, its negation is false; if p is false, its negation
IS true.



« Some examples with natural language statements:

* e.g. in English: the negation of “John is going to the store.” is
“John is not going to the store.”

* Some are less easy to negate: “I will not go to the store any day
this week.” is negated to “I will go to the store some day this
week.”

» We'll write “—p” for the negation of p.
* So we could say things like: “if p is the proposition ‘2+2=4’,
then its negation is —p, ‘2+2#4°.”
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« “—p” 1is itself a proposition: the takes a proposition and

makes a new one.

« We will use a truth table to give all of the true/false values for
predicates.

» Here is a truth table for negation

p —p
T F
F T

Conjunction

« When writing a truth table, we have to list all of the possible
combinations of values for the propositions (p, q, ...) in it.

» Since “—p” contains only “p”, there are only two rows.
» Negation is the first way we have to manipulate propositions.

« We will need others.



When propositions are manipulated to make another
proposition, we call the result a compound proposition.

Conjunction is a way to combine two propositions.
The conjunction of p and q is written pAqg.

PAQ is true if both p and q are true.

In other words, A means “and”.

In a truth table:

p q PAg
T T T
T F F
F T F
F F F

Disjunction

Notice that we got every possible combination of values for “p”
and “q” in the truth table.

Disjunction is another way to combine two propositions.
The disjunction of p and q is written pvq.

pvq is true if p is true, or g is true, or both are true.

In other words, V means “or”.

In a truth table:

P g pvQ

T T T




T F T

F T T

F F F
Conditionals

The other sentence we couldn't easily translate before: “If the
store is open today, then John will go.”

That's a conditional statement or an implication.

1.e. it expresses “If (something is true), then (something else).”
We will write p—q for the conditional “If p then q.”

P q p—q
T T T
T F F
F T T
F F T

99, 99,

Examples of p—q: “if p then q’; “q whenever p”’; “p implies q”;

99, ¢

“q follows from p”; “q only if p”.

We could also have written p—q using only V, A, and -.
For a conditional proposition p—q...

g—p 1s its converse.

—p—q is its inverse.

—q—p 1s its contrapositive.

Draw a truth table for -pvq if you don't believe me.




identical last columns:

P g |P—9 P g1™ | P 179—~P
T T T T T| F F T
T F F T F| T F F
F T T F T | F T T
F F T F F| T T T

“exclusive or”

e We actually could have expressed “exclusive or”” with the
operators we had:
e The last two columns are the same. So, we can say that the
two are equivalent, and write

pPDa=(pva)A-(pAQ).

q pva | =(pAg) | (PVA)A=(PAQ) pedq
T T F F F
F T T T T
T T T T T
F F T F F




Laws of Algebra of Propositions

* I[dempotent:

pVp=p pPApP=p

* Commutative:

pVq=qVp PAQ=qAD

* Complement:
pV-p=T pA-p=F

* Double Negation:
~(-p)=p



* Associative:

pV@Vr=(pVqeVr
PA(QADN=(PAQAT

* Distributive:
PVA@AD)=@PVQA(PVr)
PA@QVID)=(@AqQ V(AT

* Absorbtion:
pV({PAq=p
pA(PVqQ=p

* Identity:
pVT=T
pVE=p

pAT=p
pAF=F



* De Morgan’s
-PVQY=-pA-q
-PAQ=-pV-q

* Equivalence of Contrapositive:

P—q=~q—-p

* Others:
P—q=-pVq
p—q=P—9A(q—Dp)

NOTE: USING TRUTH TABLE VERIFY ALL LAW OF ALGEBRA OF
PROPOSITION



Logical Equivalence of
Conditional and Contrapositive

The easiest way to check for logical equivalence 1s to
see 1f the truth tables of both variants have
identical last columns:

4 q P —9q P g™ | 7P Q9P
T T T T T | F F T
T F F T F| T F F
F T T F T | F T T
F F T F F| T T T

Tautologies and contradictions

* A tautology 1s a sentence that 1s True under all

interpretations.

* An contradiction 1s a sentence that 1s False under all
interpretations.

P P |PVTP P P | PATP
F T T F T F
T F T T F F




Tautology by truth table

g —p pvq —paAlpvq) [pA(pvq)l—q

TTF T F T
TF F T F T
FT T T T T
FF T F F T

ExXAMPLE 2.5.1. Use the logical equivalences above to show that —(pV —(p A q))
1s a contradiction.

Solution.

—(pV—(p1q)
& —pA—=(=(p~Nq)) De Morgan’s Law

& —pA(pAhq) Double Negation Law

= (—pAp)Ag Assoctative Law

= FAg Contradiction

= F Domanation Law and Commutative Law

NOTE: A contingency is a proposition that is neither a tautology nor a
contradiction.



Propositional Logic - one last proof

Show that [p A (p — q)] — ¢ 1s a tautology.

Weuse=toshowthat[pAa(p = ¢)] > ¢g=T.
[}‘f\ gj—} q}] —q

—— =[pAa(pvel =g substitution for —
— = [gy A =plV L, Agl—q distributive
— =[Fv(prgl—g complement
— = 9‘,\ 7 —q identity

— =—(pAg) Vg substitution for —
— = (apV ) Vg DeMorgan’s
— =—pVv(agvgl associative
— = v T complement
—_— =T identity

NOTE: YOU CAN PROVE THE ABOVE PROBLEM BY USING TRUTH
TABLE ALSO.



First-order logic

* First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
— Properties of objects that distinguish them from other objects
— Relations that hold among sets of objects

— Functions, which are a subset of relations where there 1s only one
“value” for any given “input”

* Examples:
— Objects: Students, lectures, companies, cars ...

— Relations: Brother-of, bigger-than, outside, part-of, has-color.,
occurs-after, owns, visits, precedes, ...

— Properties: blue, oval, even, large, ...
— Functions: father-of, best-friend. second-halt, one-more-than ...

FOL Provides

* Variable symbols
—E.g.. X, v, foo
* Connectives

— Same as in PL: not (—), and (A), or (\v), implies (—), if
and only if (biconditional <)

* Quantifiers
— Universal Vx or (Ax)
— Existential dx or (Ex)



Quantifiers

* Universal quantification

— (Vx)P(x) means that P holds for all values of x in the
domain associated with that variable

— E.g.. (Vx) dolphin(x) — mammal(x)
* Existential quantification

— (4 x)P(x) means that P holds for some value of x in the
domain associated with that variable

—E.g.. (4 x) mammal(x) A lays-eggs(x)
— Permits one to make a statement about some object
without naming it

Quantifier Scope

* Switching the order of universal quantifiers does not change
the meaning:

— (VX)(Vy)P(x.y) < (Vy)(VX) P(x.y)

* Similarly. you can switch the order of existential
quantifiers:

~ (@)@Y)P(xy) < @y)(Ex) P(xy)
* Switching the order of universals and existentials does
change meaning:
— Everyone likes someone: (Vx)(3y) likes(x.y)
— Someone 1s liked by everyone: (3y)(Vx) likes(x.y)



Connections between All and Exists

We can relate sentences involving V and
using De Morgan’s laws:

(Vx) —P(x) < —(3x) P(x)

—(VX) P < (dx) —P(x)

(V%) P(x) < — (3x) —=P(x)

(3x) P(x) > =(Vx) =P(x)

Quantified inference rules

* Universal instantiation
Vx P(x) .. P(A)
* Universal generalization
—~ P(A) AP(B) ... .. VxP(x)
* Existential instantiation
3x P(x) .. P(F)
* Existential generalization
- P(A) . 3x P(x)
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EXERCISE-2

statementsg - )
@ (Vxe 4) x+2<10) ®)Ixe A@+2=10)
2. Negate each of the following statements :
(a)Vx,x3=x; (b)vx’x+5>x
(©) Some students are 26 or older. (d) Al students live in the hostels.
3. Wha.t 1s the truth value of V x P(x) where P(x) is a statement ‘x> < 10’ and the universe of disc
consists of positive integers not exceeding 4.
4. Use universal quantifier to state ‘the sum of any two rational numbers is rational’.
5. Over the universe of real numbers, use quantifier to say that the equation a + x = b has a solution |
for all values of a and b. (Madras, 1999)
6. Translate the foliowing statements involving quantifiers, into formulae :
(a) All rationals are reals. (b) No rationals are reals.
(¢) Some rationals are reals. (d) Some rationals are not reals.
7. Show that @ v (P A~ Q) v (~ P A ~ Q) is a tautology. (Madras, 1998)

i 5) be the universal set, determine the truth values of each of the,w"i




2.7. Normal or Canonical Forms.

DeriNiTION 2.7.1. Fvery compound proposition in the propositional variables p,
q. 1, ..., is uniquely equivalent to a proposition that is formed by taking the disjunction
of conjunctions of some combination of the variables p, q,r, ... or their negations. This
is called the disjunctive normal form of a proposition.

Discussion

The disjunctive normal form of a compound proposition is a natural and useful
choice for representing the proposition from among all equivalent forms, although it
may not be the simplest representative. We will find this concept useful when we
arrive at the module on Boolean algebra.

2.8. Examples.

Examrie 2.8.1. Construct a proposition in disjunctive normal form that is true
precisely when

(1) p is true and q is false
Solution. p A —q
(2) pis true and q is false or when p is true and q is lrue.

Solution. (p A —q)V (p/q)
3) either p is true or q is true, and v is false
3) eith is & is & dr s fal

Solution. (pV gq) A —r < (pA—r)V (gA—r) (Distributive Law)

(Notice that the second example could be simplified to just p.)



Discussion

The methods by which we arrived at the disjunctive normal form in these examples
may seem a little ad hoe. We now demonstrate, through further examples, a sure-fire
method for its construction.

2.9. Constructing Disjunctive Normal Forms.
ExampLe 2.9.1. Find the disjunctive normal form for the proposition p — q.

Solution. Construct a truth table for p — q:

rplg|r—4g
T r -
T F| F
FlT| T —
FIF| T —

p — q is true when either
p is true and q is true, or
p is false and q is true, or
p is false and q is false.
The disjunctive normal form is then

(pAq@V(—pAg)V(—pA—q)

Discussion

This example shows how a truth table can be used in a systematic way to construct
the disjunctive normal forms. Here is another example.

ExamprLe 2.9.2. Construct the disjunctive normal form of the proposition

(p—q)N—r

Solution. Write out the truth table for (p — q) A —r:
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pla|r|p—q|r|(p—=qN-T
T|\T|T T F F
T|\T|F T T T
T\F|\T| F F F
F|T|T T F F
TIF|F F T F
F|\T|F T T T
F|F|T T F F
F|\F|F T T T

The disjunctive normal form will be a disjunction of three conjunctions, one for each
row in the truth table that gives the truth value T for (p — q) A —r. These rows have
been boxed. In each conjunction we will use p if the truth value of p in that row is T
and —p if the truth value of p is F, q if the truth value of q in that row is T and —q if
the truth value of q is F, etc. The disjunctive normal form for (p — q) A —r is then

(p/\q/\—rr‘)\/(ﬁp/\(}/\ﬁ?‘)\/(ﬁp/\ﬁ(}/\ﬁ?‘),

because each of these conjunctions is true only for the combination of truth values of
p, q, and r found in the corresponding row. That is, (p N\ q A —r) has truth value T
only for the combination of truth values in row 2, (—p/AqA —r) has truth value T only
for the combination of truth values in row 6, ete. Their disjunction will be true for
precisely the three combinations of truth values of p, q, and r for which (p — q) N —r
is also true.

Terminology. The individual conjunctions that make up the disjunctive normal
form are called minterms. In the previous example, the disjunctive normal form for
the proposition (p — ¢) A —r has three minterms, (p A ¢ A —r), (=p A g A —r), and
(—|p A =g A —|?”).

2.10. Conjunctive Normal Form. The conjunctive normal form of a propo-
sition is another “canonical form” that may occasionally be useful, but not to the same
degree as the disjunctive normal form. As the name should suggests after our discus-
sion above, the conjunctive normal form of a proposition is the equivalent form that
consists of a “conjunction of disjunctions.” It is easily constructed indirectly using
disjunctive normal forms by observing that if you negate a disjunctive normal form
you get a conjunctive normal form. For example, three applications of De Morgan’s
Laws gives

e A—q) vV (pA—g)] = (mpVa) ApVa).
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Thus, if you want to get the conjunctive normal form of a proposition, construct the
disjunctive normal form of its negation and then negate again and apply De Morgan’s
Laws.

ExaMPLE 2.10.1. Find the conjunctive normal form of the proposition (p/\—q)V'r.

Solution.

(1) Negate: —=[(pA—q) Vr] < (mpVq) A -r.
(2) Find the disjunctive normal form of (=p V ¢) /A —r:

plag|r|p| | pVeg|(-pVgA-r
T T|T|F|F T

T T|F|F | T T T

T F|T|F|F F F
F|T|T|T|F T F

T F|F|F | T F F
FIT|F|T|T T T
FIF|T|T|F T F
FIF|F|T|T T T

The disjunctive normal form for (=p Vv ¢) A —r is

(PAgA=T)V (mpAgA=T)V (=p A =g A-r).

(3) The conjunctive normal form for (p A —¢g) \V r is then the negation of this last
expression, which, by De Morgan’s Laws, is

(=pV =gV r) APV -gVr)A(pVaVr).



NOTE: Follow the link from Lecture 1-11
https://www.youtube.com/watch?v=xlUFKMKSB3Y



https://www.youtube.com/watch?v=xlUFkMKSB3Y

