
Chapter

6

Graphs

6.1. Introduction to Graphs:

Graph G is a pair (V, E), where V is a finite set of vertices and E is a finite set of edges.
We will often denote n = |V|, e = |E|.

A graph is generally displayed as figure 6.5.1, in which the vertices are represented by
circles and the edges by lines.

An edge with an orientation (i.e., arrow head) is a directed edge, while an edge with no
orientation is our undirected edge.

If all the edges in a graph are undirected, then the graph is an undirected graph. The
graph in figure 6.5.1(a) is an undirected graph. If all the edges are directed; then the
graph is a directed graph. The graph of figure 6.5.1(b) is a directed graph. A directed
graph is also called as digraph. A graph G is connected if and only if there is a simple
path between any two nodes in G.

A graph G is said to be complete if every node a in G is adjacent to every other node v
in G. A complete graph with n nodes will have n(n-1)/2 edges. For example, Figure
6.5.1.(a) and figure 6.5.1.(d) are complete graphs.

A directed graph G is said to be connected, or strongly connected, if for each pair (u, v)
for nodes in G there is a path from u to v and also a path from v to u. On the other
hand, G is said to be unilaterally connected if for any pair (u, v) of nodes in G there is a
path from u to v or a path from v to u. For example, the digraph shown in figure 6.5.1
(e) is strongly connected.

 B D
A B

 v1

A C E G
 E

v2

 C D

(a) F
 (b) v3

 v1 v1 v1 v1

v4 v2

v4 v2 v4 v2
 v2 v3

(d)
v3

v3

 (f) (g)
v4 v5 v6

 v3

Figure 6.5.1 Various Graphs

We can assign weight function to the edges: wG(e) is a weight of edge e E. The graph

which has such function assigned is called weighted graph.

The number of incoming edges to a vertex v is called in degree of the vertex (denote
indeg(v)). The number of outgoing edges from a vertex is called out-degree (denote
outdeg(v)). For example, let us consider the digraph shown in figure 6.5.1(f),

indegree(v1) = 2 outdegree(v1) = 1

indegree(v2) = 2 outdegree(v2) = 0

A path is a sequence of vertices (v1, v2, , vk), where for all i, (vi, vi+1) E. A path is

simple if all vertices in the path are distinct. If there is a path containing one or more
edges which starts from a vertex Vi and terminates into the same vertex then the path
is known as a cycle. For example, there is a cycle in figure 6.5.1(a), figure 6.5.1(c) and
figure 6.5.1(d).

If a graph (digraph) does not have any cycle then it is called acyclic graph. For
example, the graphs of figure 6.5.1 (f) and figure 6.5.1 (g) are acyclic graphs.

, E) is a sub- E.

A Forest is a set of disjoint trees. If we remove the root node of a given tree then it
becomes forest. The following figure shows a forest F that consists of three trees T1, T2
and T3.

 A X

 B D
Q

Y

 R

 Z

T1 C E F

A Forest F

A graph that has either self loop or parallel edges or both is called multi-graph.

Tree is a connected acyclic graph
in a loop). A spanning tree of a graph G = (V, E) is a tree that contains all vertices of V
and is a subgraph of G. A single graph can have multiple spanning trees.

Let T be a spanning tree of a graph G. Then

1. Any two vertices in T are connected by a unique simple path.

2. If any edge is removed from T, then T becomes disconnected.

3. If we add any edge into T, then the new graph will contain a cycle.

4. Number of edges in T is n-1.

6.2. Representation of Graphs:

There are two ways of representing digraphs. They are:

 Adjacency matrix.

 Adjacency List.

 Incidence matrix.

Adjacency matrix:

In this representation, the adjacency matrix of a graph G is a two dimensional n x n

matrix, say A = (ai,j), where

a
 i, j

1

0 Otherwise

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the
graph is directed. This matrix is also called as Boolean matrix or bit matrix.

1

1

2

3

 1 0 1 1

G1:

2 0 0 1

 3 0 0 0

(a) 4

5

(b)
4 0 0 0

 5 0 0 1

Figure 6.5.2. A graph and its Adjacency matrix

Figure 6.5.2(b) shows the adjacency matrix representation of the graph G1 shown in
figure 6.5.2(a). The adjacency matrix is also useful to store multigraph as well as
weighted graph. In case of multigraph representation, instead of entry 0 or 1, the entry
will be between number of edges between two vertices.

In case of weighted graph, the entries are weights of the edges between the vertices.
The adjacency matrix for a weighted graph is called as cost adjacency matrix. Figure
6.5.3(b) shows the cost adjacency matrix representation of the graph G2 shown in
figure 6.5.3(a).

B

4

D

A B C D E F G

3
2

2

 A 0 3 6

B 3 0

2 4

A

C
4

E
1

G

C 6 2 0 1 4 2

6

2

D 4

1 0

2

E

4 2

(a)

F
 (b)

F 2

 G 4

Figure 6.5.3 Weighted graph and its Cost adjacency matrix

Adjacency List:

In this representation, the n rows of the adjacency matrix are represented as n linked
lists. An array Adj[1, 2, n] of pointers where for 1 < v < n, Adj[v] points to a
linked list containing the vertices which are adjacent to v (i.e. the vertices that can be
reached from v by a single edge). If the edges have weights then these weights may
also be stored in the linked list elements. For the graph G in figure 6.5.4(a), the
adjacency list in shown in figure 6.5.4 (b).

 1 2 3

1

1 1 1
1

1

2

3

2

2

0 0 1

3

3

3

0 1 0

2

(a) (b)

 Figure 6.5.4 Adjacency matrix and adjacency list

Incidence Matrix:

In this representation, if G is a graph with n vertices, e edges and no self loops, then

incidence matrix A is defined as an n by e matrix, say A = (ai,j), where

a
 i, j

1 if there is an edge j incident to vi

0 Otherwise

Here, n rows correspond to n vertices and e columns correspond to e edges. Such a
matrix is called as vertex-edge incidence matrix or simply incidence matrix.

6.3. Minimum Spanning Tree (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the
vertex set of the given graph, and whose edge set is a subset of the edge set of the
given graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree w(T) is the sum of weights of all edges in T. Minimum
spanning tree (MST) is a spanning tree with the smallest possible weight.

Example:

G:

A graph G:
Three (of many possible) spanning trees from graph G:

 2 2

G: 3

4

3

 5

 6

 1 1

A weighted graph G: The minimal spanning tree from weighted graph G:

Let's consider a couple of real-world examples on minimum spanning tree:

 One practical application of a MST would be in the design of a network. For
instance, a group of individuals, who are separated by varying distances,
wish to be connected together in a telephone network. Although MST cannot
do anything about the distance from one connection to another, it can be
used to determine the least cost paths with no cycles in this network,
thereby connecting everyone at a minimum cost.

 Another useful application of MST would be finding airline routes. The
vertices of the graph would represent cities, and the edges would represent
routes between the cities. MST can be applied to optimize airline routes by
finding the least costly paths with no cycles.

Minimum spanning tree, can be constructed using any of the following two algorithms:

1.

2.

Both algorithms differ in their methodology, but both eventually end up with the MST.
 in

determining the MST. In
whereas in .

6.3.1.

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e.
picking an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the
shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges
have been added. Sometimes two or more edges may have the same cost.

may result, but they will all have the same total cost, which will always be the
minimum cost.

1. Make the tree T empty.

2. Repeat the steps 3, 4 and 5 as long as T contains less than n - 1 edges and E is
not empty otherwise, proceed to step 6.

3. Choose an edge (v, w) from E of lowest cost.

4. Delete (v, w) from E.

5. If (v, w) does not create a cycle in T

then Add (v, w) to T

else discard (v, w)

6. If T contains fewer than n - 1 edges then print no spanning tree.

Example 1:

Construct the minimal spanning tree for the graph shown below:

1
10

 2 50

45 40

35
3

4 25 5

55

 15

 6

Arrange all the edges in the increasing order of their costs:

Cost 10 15 20 25 30 35 40 45 50 55

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6)

The stages in

EDGE COST

ALGORITHM

(1, 2) 10 The edge between vertices 1 and 2 is

1

2

 the first edge selected. It is included in

3
the spanning tree.

 4
5

 6

(3, 6) 15 Next, the edge between vertices 3 and 6

1

2

 is selected and included in the tree.

3

 4
5

 6

(4, 6) 20
1

2

 The edge between vertices 4 and 6 is

3
next included in the tree.

 4
5

 6

 25

1 2
 The edge between vertices 2 and 6 is

considered next and included in the

3

tree.

 4
5

 6

(1, 4) 30 Reject The edge between the vertices 1 and 4

 is discarded as its inclusion creates a

 cycle.

(3, 5) 35
1

2

 Finally, the edge between vertices 3 and

3 5 is considered and included in the tree

built. This completes the tree.

4

The cost of the minimal spanning tree is

6

 105.

Example 2:

Construct the minimal spanning tree for the graph shown below:

 1 28

10
2

6
 14

16

7

 24

25 3

 5 18
12

22 4

Solution:

Arrange all the edges in the increasing order of their costs:

Cost 10 12 14 16 18 22 24 25 28

Edge (1, 6) (3, 4) (2, 7) (2, 3) (4, 7) (4, 5) (5, 7) (5, 6) (1, 2)

EDGE COST

ALGORITHM

 10 1 The edge between vertices 1 and 6 is

 2 the first edge selected. It is included in

6

the spanning tree.

3

7

 5

 4

 12 1 Next, the edge between vertices 3 and 4

 2 is selected and included in the tree.

 6
3

7

 5

 4

 14 1 The edge between vertices 2 and 7 is

 2 next included in the tree.

 6
3

7

 5

 4

(2, 3) 16 1 The edge between vertices 2 and 3 is

 2 next included in the tree.

 6
3

7

 5

 4

Reject

 The edge between the vertices 4 and 7

(4, 7) 18 is discarded as its inclusion creates a

 cycle.

(4, 5) 22 1 The edge between vertices 4 and 7 is

 2 considered next and included in the

6

 tree.

3

7

 5

 4

(5, 7) 24 Reject The edge between the vertices 5 and 7

 is discarded as its inclusion creates a

 cycle.

(5, 6) 25 1 Finally, the edge between vertices 5 and

 2 6 is considered and included in the tree

6

 built. This completes the tree.

3

7 The cost of the minimal spanning tree is

5 99.

 4

6.3.2. MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM

A given graph can have many spanning trees. From these many spanning trees, we
have to select a cheapest one. This tree is called as minimal cost spanning tree.

Minimal cost spanning tree is a connected undirected graph G in which each edge is
labeled with a number (edge labels may signify lengths, weights other than costs).
Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as
small as possible

The slight modification of the spanning tree algorithm yields a very simple algorithm for
finding an MST. In the spanning tree algorithm, any vertex not in the tree but
connected to it by an edge can be added. To find a Minimal cost spanning tree, we
must be selective - we must always add a new vertex for which the cost of the new
edge is as small as possible.

This simple modified algorithm of spanning tree is called prim's algorithm for finding an
Minimal cost spanning tree. Prim's algorithm is an example of a greedy algorithm.

E is the set of edges in G. cost [1:n, 1:n] is the cost adjacency matrix of an n vertex
graph such that cost [i, j] is either a positive real number or if no edge (i, j) exists. A
minimum spanning tree is computed and stored as a set of edges in the array t [1:n-1,
1:2]. (t [i, 1], t [i, 2]) is an edge in the minimum-cost spanning tree. The final cost is
returned.

Algorithm Prim (E, cost, n, t)
{

Let (k, l) be an edge of minimum cost in E;
mincost := cost [k, l];
t [1, 1] := k; t [1, 2] := l;
for i :=1 to n do // Initialize near

if (cost [i, l] < cost [i, k]) then near [i] := l;
else near [i] := k;

near [k] :=near [l] := 0;
for i:=2 to n - 1 do // Find n - 2 additional edges for t.
{

Let j be an index such that near [j] 0 and
cost [j, near [j]] is minimum;
t [i, 1] := j; t [i, 2] := near [j];
mincost := mincost + cost [j, near [j]];
near [j] := 0
for k:= 1 to n do // Update near[].

if ((near [k] 0) and (cost [k, near [k]] > cost [k, j]))
then near [k] := j;

}
return mincost;

}

Prim, is a greedy algorithm that finds a minimum spanning tree for a connected
weighted graph. It finds a tree of that graph which includes every vertex and the total
weight of all the edges in the tree is less than or equal to every possible spanning tree.

Algorithm

 Initialize the minimal spanning tree with a single vertex, randomly chosen from
the graph.

 Repeat steps 3 and 4 until all the vertices are included in the tree.
 Select an edge that connects the tree with a vertex not yet in the tree, so that the

weight of the edge is minimal and inclusion of the edge does not form a cycle.
 Add the selected edge and the vertex that it connects to the tree.

Problem

algorithm.

Solution

proceed.

6.4. Reachability Matrix :

need to know the lengths of the edges in the given directed graph. This information is

-existence.

Adjacency Matrix

m
 All Pairs Rechability

 Matrix

It begins with the adjacency matrix for the given graph, which is called A0, and

1, A2, , An and
then stops.

i contains information about the existence of i

paths. A one entry in the matrix Ai will correspond to the existence of i paths and zero
entry will correspond to non-existence. Thus when the algorithm stops, the final matrix

An, contains the desired connectivity information.

A one entry indicates a pair of vertices, which are connected and zero entry indicates a
pair, which are not. This matrix is called a reachability matrix or path matrix for the
graph. It is also called the transitive closure of the original adjacency matrix.

The update rule for computing Ai from Ai-1

Ai [x, y] = Ai-1 [x, y] (Ai-1 [x, i] Ai-1 [i, y]) ---- (1)

Floyd-Warshall Algorithm is an algorithm for finding the shortest path between all the pairs of vertices in a

weighted graph. This algorithm works for both the directed and undirected weighted graphs. But, it does not

work for the graphs with negative cycles (where the sum of the edges in a cycle is negative).

A weighted graph is a graph in which each edge has a numerical value associated with it.

Floyd-Warhshall algorithm is also called as Floyd's algorithm, Roy-Floyd algorithm, Roy-Warshall algorithm or

WFI algorithm.

This algorithm follows the dynamic programming approach to find the shortest paths.

How Floyd-Warshall Algorithm Works?
Let the given graph be:

Follow the steps below to find the shortest path between all the pairs of vertices.
1. Create a matrix A1 of dimension n*n where n is the number of vertices. The row and the column are

indexed as i and j respectively. i and j are the vertices of the graph.

Each cell A[i][j] is filled with the distance from the ith vertex to the jth vertex. If there is no path
from ith vertex to jth vertex, the cell is left as infinity.

2. Now, create a matrix A1 using matrix A0. The elements in the first column and the first row are left as

they are. The remaining cells are filled in the following way.

Let k be the intermediate vertex in the shortest path from source to destination. In this step, k is the first
vertex.A[i][j] is filled with (A[i][k] + A[k][j]) if (A[i][j] > A[i][k] + A[k][j]).

That is, if the direct distance from the source to the destination is greater than the path through the
vertex k, then the cell is filled with A[i][k] + A[k][j].

In this step, k is vertex 1. We cacluate the distance from source vertex to destination vertex through this
vertex k.

For example: For A1[2, 4], the direct distance from vertex 2 to 4 is 4 and the sum of the distance from
vertex 2 to 4 through vertex (ie. from vertex 2 to 1 and from vertex 1 to 4) is 7. Since 4 < 7, A0[2, 4] is
filled with 4.

3. In a similar way, A2 is created using A3. The elements in the second column and the second row are left
as they are.

In this step, k is the second vertex (i.e. vertex 2). The remaining steps are the same as in step 2.

4. Similarly, A3 and A4 is also created.

5. A4 gives the shortest path between each pair of vertices.

Floyd-Warshall Algorithm
n = no of vertices
A = matrix of dimension n*n
for k = 1 to n
 for i = 1 to n
 for j = 1 to n
 Ak[i, j] = min (Ak-1[i, j], Ak-1[i, k] + Ak-1[k, j])
return A

6.5. Traversing a Graph

Many graph algorithms require one to systematically examine the nodes and edges of a
graph G. There are two standard ways to do this. They are:

 Breadth first traversal (BFT)

 Depth first traversal (DFT)

The BFT will use a queue as an auxiliary structure to hold nodes for future processing
and the DFT will use a STACK.

During the execution of these algorithms, each node N of G will be in one of three
states, called the status of N, as follows:

1. STATUS = 1 (Ready state): The initial state of the node N.

2. STATUS = 2 (Waiting state): The node N is on the QUEUE or STACK, waiting to

be processed.

3. STATUS = 3 (Processed state): The node N has been processed.

Both BFS and DFS impose a tree (the BFS/DFS tree) on the structure of graph. So, we
can compute a spanning tree in a graph. The computed spanning tree is not a minimum
spanning tree. The spanning trees obtained using depth first search are called depth
first spanning trees. The spanning trees obtained using breadth first search are called
Breadth first spanning trees.

6.5.1. Breadth first search and traversal:

The general idea behind a breadth first traversal beginning at a starting node A is as
follows. First we examine the starting node A. Then we examine all the neighbors of A.
Then we examine all the neighbors of neighbors of A. And so on. We need to keep track
of the neighbors of a node, and we need to guarantee that no node is processed more
than once. This is accomplished by using a QUEUE to hold nodes that are waiting to be
processed, and by using a field STATUS that tells us the current status of any node.
The spanning trees obtained using BFS are called Breadth first spanning trees.

Breadth first traversal algorithm on graph G is as follows:

This algorithm executes a BFT on graph G beginning at a starting node A.

Initialize all nodes to the ready state (STATUS = 1).

1. Put the starting node A in QUEUE and change its status to the waiting
state (STATUS = 2).

2. Repeat the following steps until QUEUE is empty:

a. Remove the front node N of QUEUE. Process N and change the
status of N to the processed state (STATUS = 3).

b. Add to the rear of QUEUE all the neighbors of N that are in the

ready state (STATUS = 1), and change their status to the waiting
state (STATUS = 2).

3. Exit.

6.5.2. Depth first search and traversal:

Depth first search of undirected graph proceeds as follows: First we examine the
starting node V. Next an unvisited vertex 'W' adjacent to 'V' is selected and a depth
first search from 'W' is initiated. When a vertex 'U' is reached such that all its adjacent
vertices have been visited, we back up to the last vertex visited, which has an unvisited
vertex 'W' adjacent to it and initiate a depth first search from W. The search terminates
when no unvisited vertex can be reached from any of the visited ones.

This algorithm is similar to the inorder traversal of binary tree. DFT algorithm is similar
to BFT except now use a STACK instead of the QUEUE. Again field STATUS is used to
tell us the current status of a node.

The algorithm for depth first traversal on a graph G is as follows.

This algorithm executes a DFT on graph G beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Push the starting node A into STACK and change its status to the waiting state
(STATUS = 2).

3. Repeat the following steps until STACK is empty:

a. Pop the top node N from STACK. Process N and change the status of N to
the processed state (STATUS = 3).

b. Push all the neighbors of N that are in the ready state (STATUS = 1), and

change their status to the waiting state (STATUS = 2).
4. Exit.

Example 1:

Consider the graph shown below. Traverse the graph shown below in breadth first
order and depth first order.

A

F C B

D E G

J K

A Graph G

Node Adjacency List

A F, C, B

B A, C, G

C A, B, D, E, F, G

D C, F, E, J

E C, D, G, J, K

F A, C, D

G B, C, E, K

J D, E, K

K E, G, J

Adjacency list for graph G

Breadth-first search and traversal:

The steps involved in breadth first traversal are as follows:

QUEUE

Processed Nodes

A B C D F G J K

 1 1 1 1 1 1 1 1

 A 2 1 1 1 1 1 1 1

 A F C B A 3 2 2 1 2 1 1 1

 F C B D A F 3 2 2 2 3 1 1 1

 B D E G A F C 3 2 3 2 3 2 1 1

 B D E G A F C B 3 3 3 2 3 2 1 1

 D E G J A F C B D 3 3 3 3 3 2 2 1

 G J K A F C B D E 3 3 3 3 3 2 2 2

 G J K A F C B D E G 3 3 3 3 3 3 2 2

 K A F C B D E G J 3 3 3 3 3 3 3 2

 K EMPTY A F C B D E G J K 3 3 3 3 3 3 3 3

For the above graph the breadth first traversal sequence is: A F C B D E G J K.

Depth-first search and traversal:

The steps involved in depth first traversal are as follows:

Stack

Processed Nodes

A B C D F G J K

 1 1 1 1 1 1 1 1

 A 2 1 1 1 1 1 1 1

 A B C F A 3 2 2 1 2 1 1 1

 F B C D A F 3 2 2 2 3 1 1 1

 D B C E J A F D 3 2 2 3 3 1 2 1

 B C E K A F D J 3 2 2 3 3 1 3 2

 K B C E G A F D J K 3 2 2 3 3 2 3 3

 G B C E A F D J K G 3 2 2 3 3 3 3 3

 B C A F D J K G E 3 2 2 3 3 3 3 3

 B A F D J K G E C 3 2 3 3 3 3 3 3

 B EMPTY A F D J K G E C B 3 3 3 3 3 3 3 3

For the above graph the depth first traversal sequence is: A F D J K G E C B.

Example 2:

Traverse the graph shown below in breadth first order, depth first order and construct
the breadth first and depth first spanning trees.

 H Adjacency List

 A F, B, C, G

B C G B A

 A, G

 E, F

D
 J K E G, D, F

A, E, D

 E A, L, E, H, J, C

L M
 G, I

T h e G r a p h G

I

H

 J G, L, K, M

 K J

 G, J, M

 L,J

The adjacency list for the graph G

If the depth first traversal is initiated from vertex A, then the vertices of graph G are
visited in the order: A F E G L J K M H I C D B. The depth first spanning tree is shown
in the figure given below:

 A

F B

 E

G D

L H C

J I

K M

Depth first Traversal

If the breadth first traversal is initiated from vertex A, then the vertices of graph G are
visited in the order: A F B C G E D L H J M I K. The breadth first spanning tree is
shown in the figure given below:

A

F B C G

E D L H J

M I K

Breadth first traversal

Example 3:

Traverse the graph shown below in breadth first order, depth first order and construct
the breadth first and depth first spanning trees.

 1

2 3

4 5 6 7

 8

1 2 3

2 1 4 5

3 1 6 7

4 2 8

5 2 8

6 3 8

7 3 8

4
5

6
7

 Adjacency list for G

Depth first search and traversal:

If the depth first is initiated from vertex 1, then the vertices of graph G are visited in
the order: 1, 2, 4, 8, 5, 6, 3, 7. The depth first spanning tree is as follows:

1

2 3

4 5 6 7

8

Depth First Spanning Tree

Breadth first search and traversal:

If the breadth first search is initiated from vertex 1, then the vertices of G are visited in
the order: 1, 2, 3, 4, 5, 6, 7, 8. The breadth first spanning tree is as follows:

1

2 3

4 5 6 7

8

Breadth First Spanning Tree

EXCERCISES

1. Show that the sum of degrees of all vertices in an undirected graph is twice the
number of edges.

2. Show that the number of vertices of odd degree in a finite graph is even.

3.

4. Show that the n-1

 1.

5. Prove that the edges explored by a breadth first or depth first traversal of a
connected graph from a tree.

6. Explain how existence of a cycle in an undirected graph may be detected by

traversing the graph in a depth first manner.

7.
adjacency matrix.

8. Give an example of a connected directed graph so that a depth first traversal of

that graph yields a forest and not a spanning tree of the graph.

9.
matrix representation of graphs.

10.

in a graph (i.e. to compute the transitive closure matrix of a graph)

11.
adjacency list.

12. Construct a weighted graph for which the minimal spanning trees produced by
m are different.

13. Describe the algorithm to find a minimum spanning tree T of a weighted graph G.
Find the minimum spanning tree T of the graph shown below.

6 5

A B C

1 8
4 2

D E
3

14. For the graph given below find the following:
a) Linked representation of the graph.
b) Adjacency list.
c) Depth first spanning tree.
d) Breadth first spanning tree.
e) Minimal spanning tree using

 8 6

 1 1 5 7

2 4 6 2 9

 3 3 8 10

4 10 9 5

15. For the graph given below find the following:
f) Linked representation of the graph.
g) Adjacency list.
h) Depth first spanning tree.
i) Breadth first spanning tree.
j)

1 4

2 3 7 8

5 6

16. For the graph given below find the following:
k) Linked representation of the graph.
l) Adjacency list.
m) Depth first spanning tree.
n) Breadth first spanning tree.
o) Minimal

5

1

6
2 4

8

3
7

 Multiple Choice Questions

1. How can the graphs be represented? []

 A. Adjacency matrix C. Incidence matrix

 B. Adjacency list D. All of the above

2. The depth-first traversal in graph is analogous to tree traversal: []

 A. In-order C. Pre-order

 D. Level order

3. The children of a same parent node are called as: []

 A. adjacent node C. Sibblings

 B. non-leaf node D. leaf node

4. Complete graphs with n nodes will have__________ edges. []

 A. n - 1 C. n(n-1)/2

 B. n/2 D. (n 1)/2

5. A graph with no cycle is called as: []

 A. Sub-graph C. Acyclic graph

 B. Directed graph

6. The maximum number of nodes at any level is: []

 A. n C. n + 1

 B. 2n D. 2n

A

20
B

 Adjacency List

15

A

B C D

23

 B A D E

C

36
D

 9
E

 C A D F

25

A B C E F G

16

28

3

B D G

F

G

C D G

17

F D E

 FIGURE 1 and its adjacency list

7. For the figure 1 shown above, the depth first spanning tree visiting []

 sequence is:

 A. A B C D E F G C. A B C D E F G

 B. A B D C F G E

8. For the figure 1 shown above, the breadth first spanning tree visiting []

 sequence is:

 A. A B D C F G E C. A B C D E F G

 B. A B C D E F G

9. []

 to add edges to the minimum spanning tree for the figure 1 shown

 above:

 A. (A, B) then (A, C) then (A, D) then (D, E) then (C, F) then (D, G)

 B. (A, D) then (E, G) then (B, D) then (D, E) then (F, G) then (A, C)

 C. both A and B

10. For the figure 1 shown above, the cost of the minimal spanning tree is: []

 A. 57 C. 48

 B. 68 D. 32

 A simple graph has no loops. What other property must a simple graph []
 have?
 A. It must be directed. C. It must have at least one vertex.
 B. It must be undirected. D. It must have no multiple edges.

 Suppose you have a directed graph representing all the flights that an []
 airline flies. What algorithm might be used to find the best sequence of
 connections from one city to another?
 A. Breadth first search. C. A cycle-finding algorithm.
 B. Depth first search. D. A shortest-path algorithm.

 If G is an directed graph with 20 vertices, how many boolean values will []
 be needed to represent G using an adjacency matrix?
 A. 20 C. 200
 B. 40 D. 400

14. Which graph representation allows the most efficient determination of []

the existence of a particular edge in a graph?

A. An adjacency matrix. C. Incidence matrix

B. Edge lists. D. none of the above

15. What graph traversal algorithm uses a queue to keep track of vertices []

which need to be processed?

A. Breadth-first search. C Level order search

B. Depth-first search. D. none of the above

16. What graph traversal algorithm uses a stack to keep track of vertices []

which need to be processed?

A. Breadth-first search. C Level order search

B. Depth-first search. D. none of the above

17. What is the expected number of operations needed to loop through all []

the edges terminating at a particular vertex given an adjacency matrix

representation of the graph? (Assume n vertices are in the graph and m

edges terminate at the desired node.)

A. O(m) C. O(m²)

B. O(n) D. O(n²)

18. What is the expected number of operations needed to loop through all []

the edges terminating at a particular vertex given an adjacency list

representation of the graph? (Assume n vertices are in the graph and m

edges terminate at the desired node.)

A. O(m) C. O(m²)

B. O(n) D. O(n²)

19.
3

 []

A

2 1 5 5

B 3 G 4 E FIGURE 3

1 4 6 1

 C
3

 F

minimum spanning tree algorithm to add edges to the minimum
spanning tree?

A. (A, G) then (G, C) then (C, B) then (C, F) then (F, E) then (E, D)
B. (A, G) then (A, B) then (B, C) then (A, D) then (C, F) then (F, E)
C. (A, G) then (B, C) then (E, F) then (A, B) then (C, F) then (D, E)
D. (A, G) then (A, B) then (A, C) then (A, D) then (A, D) then (C, F)

20. For the figure 3, w []

tree algorithm to add edges to the minimum spanning tree?

A. (A, G) then (G, C) then (C, B) then (C, F) then (F, E) then (E, D)

B. (A, G) then (A, B) then (B, C) then (A, D) then (C, F) then (F, E)

C. (A, G) then (B, C) then (E, F) then (A, B) then (C, F) then (D, E)

D. (A, G) then (A, B) then (A, C) then (A, D) then (A, D) then (C, F)

21. Which algorithm does not construct an in-tree as part of its processing? []

Algorithm

D. The Depth-First Search Trace Algorithm

22. The worst- -cost spanning tree []

algorithm on a graph with n vertices and m edges is:

A. C.

B. D.

23. An adjacency matrix representation of a graph cannot contain []

information of:

A. Nodes C. Direction of edges

B. Edges D. Parallel edges

A

 Adjacency List

A

D

B D

 B A C

G

F
 C G D F

C

E C D

 E A

 B

 FIGURE 4 and its adjacency list

24. For the figure 4, which edge does not occur in the depth first spanning []

tree resulting from depth first search starting at node B:

A. F E C. C G

B. E C D. C F

25. The set of all edges generated by DFS tree starting at node B is: []

A. B A D C G F E C. B A C D G F E

B. A D D. Cannot be generated

26. The set of all edges generated by BFS tree starting at node B is: []

A. B A D C G F E C. B A C D G F E

B. A D D. Cannot be generated

