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on
Parametric and Non-Parametric Tests

Chi-Square test, ANOVA, Mann-Whitney, 

Kruskal Wallis and Kolmogrov-Smirnov



Nonparametrics and 
goodness of fit

 In tests we have done so far, the null hypothesis
has always been a stochastic model with a few 
parameters.
 T tests

 Tests for regression coefficients

 Test for autocorrelation

 …

 In nonparametric tests, the null hypothesis is not a 
parametric distribution, rather a much larger class 
of possible distributions



Nonparametric statistics

 The null hypothesis is for example that the 
median of the distribution is zero

 A test statistic can be formulated, so that 

it has a known distribution under this 
hypothesis

it has more extreme values under 
alternative hypotheses



Nonparametric tests: features

 Nonparametric statistical tests can be used when the data 
being analysed is not a normal distribution

 Many nonparametric methods do not use the raw data and 
instead use the rank order of data for analysis

 Nonparametric methods can be used with small samples



The sign test

 Assume the null hypothesis is that the 
median of the distribution is zero. 

 Given a sample from the distribution, there 
should be roughly the same number of 
positive and negative values. 

 More precisely, number of positive values 
should follow a binomial distribution with 
probability 0.5. 

 When the sample is large, the binomial 
distribution can be approximated with a 
normal distribution



Using the sign test: Example

 Patients are asked to value doctors they have visited 
on a scale from 1 to 10. 

 78 patiens have both visitied doctors A and B, and we 
would like to find out if patients generally like one of 
them better than the other. How? 



Wilcoxon signed rank test

 Here, the null hypothesis is a symmetric 
distribution with zero median. Do as follows:

 Rank all values by their absolute values. 

 Let T+ be the sum of ranks of the positive values, and T-

corresponding for negative values

 Let T be the minimum of T+ and T-

 Under the null hypothesis, T has a known distribution. 

 For large samples, the distribution can be 
approximated with a normal distribution



Examples

 Often used on paired data.

 We want to compare primary health care costs for the 
patient in two countries: A number of people having lived 
in both countries are asked about the difference in costs per 
year. Use this data in test. 

 In the previous example, if we assume all patients attach 
the same meaning to the valuations, we could use Wilcoxon 
signed rank test on the differences in valuations



Wilcoxon rank sum test 
(or the Mann-Whitney U test)

 Here, we do NOT have paired data, but rather n1
values from group 1 and n2 values from group 2. 

 We want to test whether the values in the groups 
are samples from different distributions:
 Rank all values together 
 Let T be the sum of the ranks of the values from group 1. 
 Under the assumption that the values come from  the 

same distribution, the distribution of T is known. 
 The expectation and variance under the null hypothesis 

are simple functions of n1 and n2. 



Wilcoxon rank sum test 
(or the Mann-Whitney U test)

 For large samples, we can use a normal 
approximation for the distribution of T. 

 The Mann-Whitney U test gives exactly the same 
results, but uses slightly different test statistic. 



Example

 We have observed values
 Group X: 1.3, 2.1, 1.5, 4.3, 3.2

 Group Y: 3.4, 4.9, 6.3, 7.1

are the groups different? 

 If we assume that the values in the groups are 
normally distributed, we can solve this using the T-
test. 

 Otherwise we can try the rank sum test:



Example (cont.)

1 1.3

2 1.5

3 2.1

4 3.2

5 3.4

6 4.3

7 4.9

8 6.3

9 7.1

Rank Group X Group Y

Ranksum:                    16                      29   

Wilcoxon: 16

Expected: 25

St. dev: 4.08

p-value: 0.032



Spearman rank correlation

 This can be applied when you have two observations 
per item, and you want to test whether the 
observations are related. 

 Computing the sample correlation gives an 
indication. 

 We can test whether the population correlation could 
be zero but test needs assumption of normality. 



Spearman rank correlation

 The Spearman rank correlation tests for 
association without any assumption on the 
association: 
 Rank the X-values, and rank the Y-values. 
 Compute ordinary sample correlation of the ranks: This 

is called the Spearman rank correlation. 
 Under the null hypothesis that X values and Y values are 

independent, it has a fixed, tabulated distribution 
(depending on number of observations)

 The ordinary sample correlation is sometimes 
called Pearson correlation to separate it from 
Spearman correlation. 



Contingency tables

 The following data type is frequent: Each object 
(person, case,…) can be in one of two or more 
categories. The data is the count of number of objects 
in each category. 

 Often, you measure several categories for each 
object. The resulting counts can then be put in a 
contingency table. 



Testing if probabilities are as specified

 Example: Have n objects been placed in K groups 
each with probability 1/K? 
 Expected count in group i: 

 Observed count in group i: 

 Test statistic: 

 Test statistic has approx.     distribution with K-1 degrees of 
freedom under null hypothesis. 

2



Testing association in a 
contingency table

A B C TOTAL

X 23 14 19 R1=56

Y 14 7 10 R2=31

Z 9 5 54 R3=68

TOTAL C1=46 C2=26 C3=83 155

n values in total



Testing association in a 
contingency table

 If the assignment of values in the two categories is 
independent, the expected count in a cell can be computed 
from the marginal counts: 

 Actual observed count: 

 Test statistic: 

 Under null hypothesis, it has     distribution with (r-1)(c-1) 
degrees of freedom
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Goodness-of-fit tests

 Sometimes, the null hypothesis is that the data 
comes from some parametric distribution, values 
are then categorized, and we have the counts from 
the categories. 

 To test this hypothesis: 
 Estimate parameters from data. 

 Compute expected counts. 

 Compute the test statistic used for contingency tables. 

 This will now have a chi-squared distribution under the 
null hypothesis. 



Tests for normality

 Visual methods, like histograms and normality plots, 
are very useful. 

 In addition, several statistical tests for normality 
exist: 

 Kolmogorov-Smirnov test (can test against other distributions 
too)

 Bowman-Shelton test (tests skewness and kurtosis)



Remarks on
nonparametric statistics

 Tests with much more general null hypotheses, and 
so fewer assumptions

 Often a good choice when normality of the data 
cannot be assumed

 If you reject the null hypothesis with a 
nonparametric test, it is a robust conclusion

 However, with small amounts of data, you can often 
not get significant conclusions



Mann-Whitney U test

 This is the nonparametric equivalent of the unpaired 

t-test 

 It is applied when there are two independent samples 
randomly drawn from the population e.g. diabetic patients 
versus non-diabetics .

 THe data has to be ordinal i.e. data that can be ranked (put 
into order from highest to lowest )

 It is recommended that the data should be >5 and <20 (for 
larger samples, use formula or statistical  packages) 

 The sample size in both population should be equal



Uses of Mann-Whitney U test 

 Mainly used to analyse the difference between the 
medians of two data sets. 

 You want to know whether two sets of 
measurements genuinely differ.  



Calculation of Mann-Whitney U test 

 To calculate the value of Mann-Whitney U test, we 
use the following formula:

Where:
U=Mann-Whitney U test
N1 = sample size one
N2= Sample size two
Ri = Rank of the sample size

The U test is included in most modern statistical 
packages which do the calculations



Mann-Whitney U test 

Mann Whitney U-test can be used to compare any two data 
sets that are not normally distributed .

As long as the data is capable of being ranked, then the test 
can be applied. 



Analysis of variance

 Comparing more than two groups

 Up to now we have studied situations with
 One observation per object

 One group

 Two groups

 Two or more observations per object

 We will now study situations with one observation 
per object, and three or more groups of objects

 The most important question is as usual: Do the 
numbers in the groups come from the same 
population, or from different populations? 



ANOVA

 If you have three groups, could plausibly do pairwise 
comparisons. But if you have 10 groups? Too many 
pairwise comparisons: You would get too many false 
positives! 

 You would really like to compare a null hypothesis of 
all equal, against some difference

 ANOVA: ANalysis Of VAriance 



One-way ANOVA: Example

 Assume ”treatment results” from 13 patients visiting 
one of three doctors are given: 
 Doctor A: 24,26,31,27

 Doctor B: 29,31,30,36,33

 Doctor C: 29,27,34,26

 H0: The treatment results are from the same 
population of results

 H1: They are from different populations



Comparing the groups

 Averages within groups: 

 Doctor A: 27

 Doctor B: 31.8

 Doctor C: 29

 Total average: 

 Variance around the mean matters for 
comparison. 

 We must compare the variance within the groups 
to the variance between the group means. 

4 27 5 31.8 4 29
29.46

4 5 4

    


 



Variance within and between groups

 Sum of squares within groups: 

 Compare it with sum of squares between 
groups: 

 Comparing these, we also need to take into 
account the number of observations and sizes of 
groups

2 2 2(24 27) (26 27) ... (29 31.8) .... 94.8SSW         

2 2 2

2 2 2

(27 29.46) (27 29.46) ... (31.8 29.46) ....

4(27 29.46) 5(31.8 29.46) 4(29 29.46) 52.43

SSG        

      



Adjusting for group sizes

 Divide by the number of degrees of freedom

 Test statistic:            reject H0 if this is large

SSW
MSW

n K




1

SSG
MSG

K




MSG

MSW

Both are estimates of population 

variance of error under H0

n:  number of observations

K:  number of groups



Test statistic thresholds

 If populations are normal, with the same variance, 
then we can show that under the null hypothesis, 

 Reject at confidence level      if 

1,~ K n K

MSG
F

MSW
 



1, ,K n K

MSG
F

MSW
 

The F distribution, with 

K-1 and n-K degrees of 

freedom

Find this value in a table



Continuing example

Thus we can NOT reject the null hypothesis in 
our case.

94.8
9.48

13 3

SSW
MSW

n K
  

 

52.43
26.2

1 3 1

SSG
MSG

K
  

 

26.2
2.76

9.48

MSG

MSW
  3 1,13 3,0.05 4.10F   



ANOVA table

Source of 

variation

Sum of 

squares

Deg. of 

freedom

Mean 

squares

F ratio

Between 

groups

SSG K-1 MSG

Within 

groups

SSW n-K MSW

Total SST n-1

MSG

MSW

2 2 2(24 29.46) (26 29.46) ... (26 29.46)SST       

SSG SSW SST NOTE:



One-way ANOVA in SPSS



ANOVA

VAR00001

52,431 2 26,215 2,765 ,111

94,800 10 9,480

147,231 12

Between Groups

Within Groups

Total

Sum of

Squares df Mean Square F Sig.

Use ”Analyze => Compare Means => One-way ANOVA

Last column: The p-value: The smallest value of       at which the 

null hypothesis is rejected. 




The Kruskal-Wallis test

 ANOVA is based on the assumption of 
normality

 There is a non-parametric alternative not 
relying this assumption:
 Looking at all observations together, rank them

 Let R1, R2, …,RK be the sums of ranks of each group

 If some R’s are much larger than others, it indicates the 
numbers in different groups come from different 
populations



The Kruskal-Wallis test

 The test statistic is

 Under the null hypothesis, this has an 
approximate       distribution. 

 The approximation is OK when each group 
contains at least 5 observations. 

2

1K 

2

1

12
3( 1)

( 1)

K
i

i i

R
W n

n n n

  





Example: previous data

Doctor A Doctor B Doctor C

24 (rank 1) 29 (rank 6.5) 29 (rank 6.5)

26 (rank 2.5) 31 (rank 9.5) 27 (rank 4.5)

31 (rank 9.5) 30 (rank 8) 34 (rank 12)

27 (rank 4.5) 36 (rank 13) 26 (rank 2.5)

33 (rank 11)

R1=17.5 R2=48 R3=25.5

(We really have

too few 

observations 

for this test!)



Kruskal-Wallis in SPSS

 Use ”Analyze=>Nonparametric tests=>K 
independent samples”

 For our data, we get 

Ranks

4 4,38

5 9,60

4 6,38

13

VAR00002

1

2

3

Total

VAR00001

N Mean Rank

Test Statisticsa,b

4,195

2

,123

Chi-Square

df

Asy mp. Sig.

VAR00001

Kruskal Wallis Testa.  

Grouping Variable: VAR00002b. 



When to use what method

 In situations where we have one observation per 
object, and want to compare two or more groups: 

 Use non-parametric tests if you have enough data

 For two groups: Mann-Whitney U-test (Wilcoxon rank sum)

 For three or more groups use Kruskal-Wallis

 If data analysis indicate assumption of normally 
distributed independent errors is OK

 For two groups use t-test (equal or unequal variances assumed)

 For three or more groups use ANOVA



When to use what method

 When you in addition to the main observation have 
some observations that can be used to pair or block 
objects, and want to compare groups, and 
assumption of normally distributed independent 
errors is OK: 
 For two groups, use paired-data t-test

 For three or more groups, we can use two-way ANOVA



Two-way ANOVA (without interaction)

 In two-way ANOVA, data fall into categories in two 
different ways: Each observation can be placed in a 
table. 

 Example: Both doctor and type of treatment 
should influence outcome. 

 Sometimes we are interested in studying both 
categories, sometimes the second category is used 
only to reduce unexplained variance. Then it is 
called a blocking variable



Sums of squares for two-way ANOVA

 Assume K categories, H blocks, and assume one 
observation xij for each category i and each block j 
block, so we have n=KH observations. 

Mean for category i: 

Mean for block j: 

Overall mean: 

ix 

jx

x



Sums of squares for two-way ANOVA

2

1

( )
K

i

i

SSG H x x



 
2

1

( )
H

j

j

SSB K x x



 

2

1 1

( )
K H

ij i j

i j

SSE x x x x 

 

    2

1 1

( )
K H

ij

i j

SST x x
 

 

SSG SSB SSE SST  



ANOVA table for two-way data

Source of 

variation

Sums of 

squares

Deg. of 

freedom

Mean squares F ratio

Between groups SSG K-1 MSG= SSG/(K-1) MSG/MSE

Between blocks SSB H-1 MSB= SSB/(H-1) MSB/MSE

Error SSE (K-1)(H-1) MSE=       

SSE/(K-1)(H-1)

Total SST n-1

Test for between groups effect: compare               to 

Test for between blocks effect: compare                to

MSG

MSE

MSB

MSE

1,( 1)( 1)K K HF   

1,( 1)( 1)H K HF   



Two-way ANOVA (with interaction)

 The setup above assumes that the blocking variable 
influences outcomes in the same way in all categories 
(and vice versa)

 We can check if there is interaction between the 
blocking variable and the categories by extending the 
model with an interaction term 



Sums of squares for two-way ANOVA (with 
interaction)

 Assume K categories, H blocks, and assume L 
observations xij1, xij2, …,xijL for each category i and 
each block j block, so we have n=KHL observations. 

Mean for category i: 

Mean for block j:             

Mean for cell ij:  

Overall mean: 

ix 

jx 

x

ijx 



Sums of squares for two-way ANOVA (with 
interaction)

2

1

( )
K

i

i

SSG HL x x



 
2

1

( )
H

j

j

SSB KL x x 



 

2

1 1

( )
K H

ij i j

i j

SSI L x x x x   

 

   

2

1 1 1

( )
K H L

ijl

i j l

SST x x
  

 

SSG SSB SSI SSE SST   

2

1 1 1

( )
K H L

ijl ij

i j l

SSE x x 

  

 



ANOVA table for two-way data (with 
interaction)

Source of 

variation

Sums of 

squares

Deg. of 

freedom

Mean squares F ratio

Between groups SSG K-1 MSG= SSG/(K-1) MSG/MSE

Between blocks SSB H-1 MSB= SSB/(H-1) MSB/MSE

Interaction SSI (K-1)(H-1) MSI=        

SSI/(K-1)(H-1)

MSI/MSE

Error SSE KH(L-1) MSE=           

SSE/KH(L-1)

Total SST n-1

Test for interaction: compare MSI/MSE with 

Test for block effect: compare MSB/MSE with 

Test for group effect: compare MSG/MSE with 1, ( 1)K KH LF  

1, ( 1)H KH LF  

( 1)( 1), ( 1)K H KH LF   



Notes on ANOVA

 All analysis of variance (ANOVA) methods are based 
on the assumptions of normally distributed and 
independent errors

 The same problems can be described using the 
regression framework. We get exactly the same tests 
and results! 

 There are many extensions beyond those mentioned



The Kolmogorov-Smirnov Test

 Introduction: The Kolmogorov-Smirnov test is a statistical test for
equality of continuous probability distributions. It can either compare a
sample with a reference probability distribution or it can directly
compare two sample datasets. The first is referred to as the one-sample
K-S test and serves as a goodness of fit test and the second as the two-
sample K-S test.1 The basis of the test is that it relates the distance
between the cumulative fraction functions of the two samples as a
number, D, which is then compared to the critical-D value for that data
distribution.4 If D is greater than critical-D, then it can be concluded
that the distributions are indeed different, otherwise there is not
enough evidence to prove difference between the two datasets.5 A P-
value can also be calculated from the D-value and the sample size of the
two data sets; this value answers the question of what is the probability
that the D-value would be that large or larger if two samples were
randomly sampled from identical populations as was observed?4



VALUES OF DATA SET 1 AND DATA SET 2



KS comparison

Example of a non-normal 

empirical distribution function

Example of the log-transformed 

empirical distribution function from 

Figure 1 

Example of calculated D-

value for a 2-sample K-S test



Procedure:

 1. Order data sets from smallest to largest.

 2. For each value in the data sets, calculate the percent of data
strictly smaller than that value.

 3.Plot all calculated percent values as steps on a cumulative fraction
function, one for each data set if it is a two-sample K-S test.

 4.If steps are bunched close to one another on one side of the graph,
you can take the log of all data points and plot the distribution
function based on that instead. For log, all data points must be
nonzero and nonnegative.

 5. Calculate the maximum vertical distance between the two
functions to acquire the D-value. This value along with the
corresponding P-value states whether data sets differ significantly.



Strengths of the K-S test: 

 1. It is nonparametric.

 2. D-value result will not change if X values are 
transformed to logs or reciprocals or any other 
transformation.

 3. No restriction on sample size.

 4. The D-value is easy to compute and the graph 
can be understood easily.

 5. One sample K-S test can serve as a goodness-of-
fit test and can link data and theory.



Drawbacks:

1. The K-S test is less sensitive when the 
differences between curves is greatest at the 
beginning or the end of the distributions. It 
works best when EDFs deviate the most near 
the center of the distribution.

2. The K-S test cannot be applied in two or more 
dimensions because it is a EDF based test.




