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Thomas Bayes

(c. 1702 – April 17, 1761) 





Frequentists

• The populist view of probability is the so-called 
frequentist approach: 

• whereby the probability P of an uncertain event A, P(A), 
is defined by the frequency of that event based on 
previous observations.

• For example, in the UK 50.9% of all babies born are 
girls; suppose then that we are interested in the event A: 
'a randomly selected baby is a girl'. 

• According to the frequentist approach P(A)=0.509. 



Bayesianism

• The frequentist approach for defining the probability of an uncertain event is 
fine providing that we have been able to record accurate information about 
many past instances of the event. However, if no such historical database 
exists, then we have to consider a different approach. 

• Bayesian probability is a formalism that allows us to reason about beliefs 
under conditions of uncertainty. If we have observed that a particular event 
has happened, such as Britain coming 10th in the medal table at the 2004 
Olympics, then there is no uncertainty about it.

• However, suppose a is the statement “Britain sweeps the boards at 2012 
London Olympics, winning 36 Gold Medals!“

• Since this is a statement about a future event, nobody can state with any 
certainty whether or not it is true. Different people may have different beliefs 
in the statement depending on their specific knowledge of factors that might 
effect its likelihood.



Sporting woes continued…

• For example, Henry may have a strong belief in the statement a based on 
his knowledge of the current team and past achievements.

• Marcel, on the other hand, may have a much weaker belief in the statement 
based on some inside knowledge about the status of British sport; for 
example, he might know that British sportsmen failed in bids to qualify for 
the Euro 2008 in soccer, win the Rugby world cup and win the Formula 1 
world championship – all in one weekend!

• Thus, in general, a person's subjective belief in a statement a will depend 
on some body of knowledge K. We write this as P(a|K). Henry's belief in a is 
different from Marcel's because they are using different K's. However, even 
if they were using the same K they might still have different beliefs in a.

• The expression P(a|K) thus represents a belief measure. Sometimes, for 
simplicity, when K remains constant we just write P(a), but you must be 
aware that this is a simplification. 



• True Bayesians actually consider conditional probabilities as more basic 
than joint probabilities . It is easy to define P(A|B) without reference to the 
joint probability P(A,B). To see this note that we can rearrange the 
conditional probability formula to get:

• P(A|B) P(B) = P(A,B)

by symmetry:

• P(B|A) P(A) = P(A,B)

• It follows that:

• which is the so-called Bayes Rule.

Bayes Theorem



Why are we here?

• Fundamental difference in the experimental approach

• Normally reject (or fail to reject H0) based on an arbitrarily 
chosen P value (conventionally <0.05) [In other words we 
choose our willingness to accept a Type I error] 

• This tells us nothing about the probability of H1

• The frequentist conclusion is restricted to the data at hand, 
it doesn’t take into account previous, valuable information. 



Conclusions depends on previous evidence. Bayesian 

approach is not data analysis per se,  it brings different types of 

evidence to answer the questions of importance.

In general, we want to relate an event (E) to a hypothesis (H)

and the probability of E given H 

Given a prior state of knowledge or belief, it tells how to update beliefs based 

upon observations (current data). 

The probability of a H being true is determined. 

You can compare the probabilities of different H for a same E

A probability distribution of the parameter or hypothesis is obtained



Macaulay Culkin 

Busted for Drugs!

Our observations….

DREW BARRYMORE REVEALS 

ALCOHOL AND DRUG PROBLEMS 

STARTED AGED EIGHT 

Feldman , arrested 

and charged with 

heroin possession 
Corey Haim in a spiral of 

prescription drug abuse!

Dana Plato died of a drug

overdose at age 34

Todd Bridges on suspicion of 

shooting and stabbing alleged 

drug dealer in a crack house. ...





We took a random sample of 40 people, 10 of them 

were young stars, being 3 of them addicted to drugs. 

From the other 30, just one. 

Our hypothesis is: “Young actors have more probability of becoming drug-addicts”

Drug-addicted

young 

actors 

1 29

10

30

3 7

4 36 40

control

YA+

YA-

D+ D-



With a frequentist approach we will test:

Hi:’Conditions A and B have different effects’

Young actors have a different probability of becoming drug addicts than 

the rest of the people 

H0:’There is no difference in the effect of conditions A and B’

This is not what we want to know!!!

…and we have  strong believes that young actors have more probability of 

becoming drug addicts!!!

The statistical test of choice is 2 and Yates’ correction:

2 = 3.33      p=0.07

We can’t reject the null hypothesis, and the information the p is giving us is 

basically that if we “do this experiment” many times, 7% of the times we will obtain 

this result if there is no difference between both conditions.



We want to know if 

1 (0.025) 29 (0.725)

10 (0.25)

30 (0.75)

3 (0.075) 7 (0.175)

4 (0.1) 36 (0.9) 40  (1)

p(D+YA+)

p (D+ YA+) = p (D+ and YA+) / p (YA+)

p (D+YA+)  p (YA+D+)

Reformulating

This is Bayes’ Theorem !!!

YA+

YA-

D-D+

total

total

p (YA+ D+) = p (D+ and YA+) / p (D+)

p (D+ YA+) = 0.075 / 0.25 = 0.3 

p (YA+ D+) = 0.075 / 0.1 = 0.75

0.3  0.75

p (D+ and YA+) = p (YA+ D+) * p (D+) 

p (D+ YA-) = p (D+ and YA-) / p (YA-)

p (D+YA+) > p (D+YA-)

p (D+ YA-) = 0.025 / 0.75 = 0.033

p (D+YA+) > p (D+YA-)

0.3 > 0.033

With a Bayesian approach…

p (D+YA-)

p (YA+D+)

p (YA+ D+) * p (D+)

p (YA+) 
p (D+ YA+)

Substituting p (D+ and YA+) on 

p (D+ YA+) = p (D+ and YA+) / p (YA+)



An Example• Suppose that we are interested in diagnosing cancer in patients who visit a 
chest clinic:

• Let A represent the event "Person has cancer"

• Let B represent the event "Person is a smoker"

• We know the probability of the prior event P(A)=0.1 on the basis of past data 
(10% of patients entering the clinic turn out to have cancer). We want to 
compute the probability of the posterior event P(A|B). It is difficult to find this 
out directly. However, we are likely to know P(B) by considering the 
percentage of patients who smoke – suppose P(B)=0.5. We are also likely to 
know P(B|A) by checking from our record the proportion of smokers among 
those diagnosed. Suppose P(B|A)=0.8.

• We can now use Bayes' rule to compute:

• P(A|B) = (0.8 * 0.1)/0.5 = 0.16

• Thus, in the light of evidence that the person is a smoker we revise our prior 
probability from 0.1 to a posterior probability of 0.16. This is a significance 
increase, but it is still unlikely that the person has cancer.



• Suppose that we have two bags each containing black and white balls.

• One bag contains three times as many white balls as blacks. The other bag 
contains three times as many black balls as white.

• Suppose we choose one of these bags at random. For this bag we select five 
balls at random, replacing each ball after it has been selected. The result is 
that we find 4 white balls and one black.

• What is the probability that we were using the bag with mainly white balls?

Another Example…



Solution• Solution. Let A be the random variable "bag chosen" then A={a1,a2} where 
a1 represents "bag with mostly white balls" and a2 represents "bag with 
mostly black balls" . We know that P(a1)=P(a2)=1/2 since we choose the 
bag at random.

• Let B be the event "4 white balls and one black ball chosen from 5 
selections".

• Then we have to calculate P(a1|B). From Bayes' rule this is:

• Now, for the bag with mostly white balls the probability of a ball being white 
is ¾ and the probability of a ball being black is ¼. Thus, we can use the 
Binomial Theorem, to compute P(B|a1) as:

• Similarly

• hence



A big advantage of a Bayesian approach

• Allows a principled approach to the exploitation 
of all available data …

• with an emphasis on continually updating one’s 
models as data accumulate 

• as seen in the consideration of what is learned 
from a positive mammogram



Bayesian Reasoning
ASSUMPTIONS

1% of women aged forty who participate in a routine screening 
have breast cancer
80% of women with breast cancer will get positive tests
9.6% of women without breast cancer will also get positive tests

EVIDENCE
A woman in this age group had a positive test in a routine 
screening

PROBLEM
What’s the probability that she has breast cancer?



Bayesian Reasoning
ASSUMPTIONS

10 out of 1000 women aged forty who participate in a routine 
screening have breast cancer
800 out of 1000 of women with breast cancer will get 
positive tests
95 out of 1000 women without breast cancer will also get 
positive tests

PROBLEM
If 1000 women in this age group undergo a routine screening, 
about what fraction of women with positive tests will actually 
have breast cancer?



Bayesian Reasoning
ASSUMPTIONS

100 out of 10,000 women aged forty who participate in a 
routine screening have breast cancer
80 of every 100 women with breast cancer will get positive 
tests
950 out of 9,900 women without breast cancer will also get 
positive tests

PROBLEM
If 10,000 women in this age group undergo a routine 
screening, about what fraction of women with positive tests 
will actually have breast cancer?



Bayesian Reasoning
Before the screening:
100 women with breast cancer
9,900 women without breast cancer

After the screening:
A = 80 women with breast cancer and positive test
B = 20 women with breast cancer and negative test
C = 950 women without breast cancer and positive test
D = 8,950 women without breast cancer and negative test

Proportion of cancer patients with positive results, within the group 
of ALL patients with positive results:

A/(A+C) = 80/(80+950) = 80/1030 = 0.078 = 7.8%



Compact Formulation
C = cancer present, T = positive test

p(A|B) = probability of A, given B, ~ = not

PRIOR PROBABILITY
p(C) = 1%

CONDITIONAL PROBABILITIES
p(T|C) = 80%

p(T|~C) = 9.6%

POSTERIOR PROBABILITY (or REVISED PROBABILITY)
p(C|T) = ?

PRIORS



Bayesian Reasoning
Before the screening:
100 women with breast cancer
9,900 women without breast cancer

After the screening:
A = 80 women with breast cancer and positive test
B = 20 women with breast cancer and negative test
C = 950 women without breast cancer and positive test
D = 8,950 women without breast cancer and negative test

Proportion of cancer patients with positive results, within the group 
of ALL patients with positive results:

A/(A+C) = 80/(80+950) = 80/1030 = 0.078 = 7.8%



Bayesian Reasoning
Prior Probabilities:

100/10,000 = 1/100 = 1% = p(C)

9,900/10,000 = 99/100 = 99% = p(~C)

Conditional Probabilities:

A = 80/10,000 = (80/100)*(1/100) = p(T|C)*p(C) = 0.008

B = 20/10,000 = (20/100)*(1/100) = p(~T|C)*p(C) =  0.002

C = 950/10,000 = (9.6/100)*(99/100) = p(T|~C)*p(~C) = 0.095

D = 8,950/10,000 = (90.4/100)*(99/100) = p(~T|~C) *p(~C) = 0.895

Rate of cancer patients with positive results, within the group of ALL 
patients with positive results:

A/(A+C) = 0.008/(0.008+0.095) = 0.008/0.103 = 0.078 = 7.8%



-----> Bayes’ theorem

p(T|C)*p(C)

p(C|T) =   ______________________

P(T|C)*p(C) + p(T|~C)*p(~C)

A

A   +   C



Comments

• Common mistake: to ignore the prior probability
• The conditional probability slides the revised 

probability in its direction but doesn’t replace the 
prior probability

• A NATURAL FREQUENCIES presentation is one in 
which the information about the prior probability is 
embedded in the conditional probabilities (the 
proportion of people using Bayesian reasoning rises to 
around half).

• Test sensitivity issue (or: “if two conditional 
probabilities are equal, the revised probability equals 
the prior probability”)

• Where do the priors come from?



-----> Bayes’ theorem

p(X|A)*p(A)

p(A|X) =   ______________________

P(X|A)*p(A) + p(X|~A)*p(~A)

Given some phenomenon A that we want to investigate, and an
observation X that is evidence about A, we can update the original
probability of A, given the new evidence X.



It relates the conditional density of a parameter (posterior probability) 

with its unconditional  density (prior, since depends on information 

present before the experiment). 

The likelihood is the probability of the data given the parameter and 

represents the data now available. 

Bayes’ Theorem for a given parameter 

p (data) = p (data) p () / p (data)

1/P (data) is basically 

a normalizing constant

Posterior  likelihood x prior

The prior is the probability of the parameter and represents what was 

thought before seeing the data.

The posterior represents what is thought given both prior information 

and the data just seen. 



http://www.fil.ion.ucl.ac.uk/spm/software/spm2/

“In addition to WLS estimators and classical inference, SPM2 also 
supports Bayesian estimation and inference. In this instance the 
statistical parametric maps become posterior probability maps 
Posterior Probability Maps (PPMs), where the posterior probability is 
a probability of an effect given the data. There is no multiple 
comparison problem in Bayesian inference and the posterior 
probabilities do not require adjustment.”



Overview of SPM Analysis

Motion
Correction

Smoothing

Spatial
Normalisation

General Linear Model

Statistical Parametric MapfMRI time-series

Parameter Estimates

Design matrix

Anatomical Reference



Activations in fMRI….

• Classical 

– ‘What is the likelihood of getting these data given no 

activation occurred?’

• Bayesian option (SPM5)

– ‘What is the chance of getting these parameters, given these data?



In fMRI….

• Classical 

– ‘What is the likelihood of 

getting these data given 

no activation occurred?’

• Bayesian (SPM5)

– ‘What is the chance of 

getting these parameters, 

given these data?



 spatial normalization

 segmentation

and Bayesian inference in…

 Posterior Probability Maps (PPM)

 Dynamic Causal Modelling (DCM)

SPM uses priors for estimation in…

Bayes in SPM
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Likelihood: p(y|) = N(Md, ld
-1)

Prior: p() = N(Mp, lp
-1)

Posterior: p(|y)∝ p(y|)* p() = N(Mpost, lpost
-1)

Mp

lp
-1

Mpost

lpost
-1

ld
-1

Md

lpost = ld + lp Mpost =  ld   Md + lp   Mp

lpost

Posterior Probability Distribution
precision l = 1/2





The effects of different precisions

lp  = ld

lp  < ld

lp  > ld

lp  ≈ 0 



Shrinkage Priors

Small, variable effect Large, variable effect

Small, consistent effect Large, consistent effect

 





The General Linear Model

Observed data   =   Predictors  *  Parameters   +   Error

= +

N

1

N N

1 1p

p
X

β

εy

y = Xβ + ε

eg. Image intensities Also called the 

design matrix.

How much each 

predictor contributes 

to the observed data

Variance in the data

not explained by 

the model



Multivariate Distributions



Thresholding

p( > g | y) = 0.95

g





Summary

In Bayesian estimation we…

1. …start with the formulation of a model that we hope is 

adequate to describe the situation of interest.

2. …observe the data and when the information available 

changes it is necessary to update the degrees of belief 

(probability).

3. …evaluate the fit of the model. If necessary we compute 

predictive distributions for future observations.

priors over the 

parameters

posterior 

distributions

new priors over 

the parameters

Prejudices or scientific judgment?

The selection of a 

prior is subjective 

and arbitrary.

It is reasonable to draw 

conclusions in the light of 

some reason.

Bayesian methods use probability models for quantifying 

uncertainty in inferences based on statistical data analysis.
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Applications of Bayes’ theorem in functional 

brain imaging

Caroline Catmur

Department of Psychology

UCL



When can we use Bayes’ theorem?

• Pre-processing: Spatial Normalisation

• Image Segmentation in Co-registration and in 

Voxel-Based Morphometry (VBM) 

• Analysis and Inference: Posterior Probability Maps 

(PPMs) vs. Statistical Parametric Maps (SPMs)

• Variational Bayes (1st-level analysis)

• Connectivity: Dynamic Causal Modelling (DCM)

• EEG/MEG: Source Reconstruction



Pre-processing: Spatial Normalisation



Spatial Normalisation

• Combine data from several subjects = increase in 

power

• Allow extrapolation to population

• Report results in standard coordinates

• 2 stages:

– Affine registration

– Non-linear warping



Affine Transformations

• 12 different transformations

– 3 translations, 3 rotations, 3 

zooms and 3 shears

• Bayesian constraints 

applied: priors based on 

known ranges of the 

transformations

Empirically generated priors



Effect of Bayesian constraints on non-linear 

warping

Affine registration

Non-linear

registration

with

regularisation 

(Bayesian 

constraints)

Template

image

Non-linear

registration

without

regularisation 

introduces 

unnecessary warps



Surely it’s time for some equations?

• Bayes’ rule is used to constrain the non-linear warping by 

incorporating prior knowledge of the likely extent of 

deformations:

• p(p|e)  p(e|p) p(p)

– p(p|e) is the posterior probability of parameters p given errors e

– p(e|p) is the likelihood of observing errors e given parameters p

– p(p) is the prior probability of parameters p



Image Segmentation

• Segmentation = dividing up the brain into 

grey/white matter, cerebro-spinal fluid (CSF), non-

brain tissue (skull, etc.)

• Used during co-registration (part of pre-

processing) and for Voxel Based Morphometry 

(VBM)

• Relies on Bayes’ theorem



Priors are used to constrain image 

segmentation

• Prior probability images taken from average of 152 brains 

used as Bayesian constraints on image segmentation

Priors:

Image:

Non-brain/skullCSFWMGM



Analysis and Inference: PPMs vs. SPMs



Classical vs. Bayesian inference

• Classical: p(these data|H0) 

• H0 = no experimental effect, i.e. β = 0

• Remember that β (beta) is the parameter that 

indicates the contribution of a particular column in 

your design matrix to the data:



= +x1

β1

β2

β3

εy x2 x3

Observed data   =   Predictors  *  Parameters +   Error

Cast your mind back to last week…



≈ β1∙ + β2∙ + β3∙

2 3 4 0 1 0 1 0 1 2

0.83 0.16 2.98

Listening

Reading

Rest

The betas indicate the contribution of each 

predictor to the data in each voxel



Classical vs. Bayesian inference

• So in Classical inference we ask: 

p(these data|β=0) or p(y|β)

• In Bayesian inference we ask: 

p(β|these data) or p(β|y)
[Remember: p(y|β) ≠ p(β|y)]

p(β|y)  p(y|β)*p(β)

posterior  likelihood * prior

PPM  SPM * priors

This produces 

the values for 

a statistical 

parametric 

map (SPM)

This is 

plotted as a 

posterior 

probability 

map (PPM)



So what are the priors?

• The SPM program uses Parametric Empirical 

Bayes (PEB)

• Empirical = the priors are estimated from the data

• Hierarchical: higher levels of analysis provide 

Bayesian constraints on lower levels

• Typically 3 levels:

within-voxel – between-voxels – between-subjects

constrains constrains



PEB = classical inference at the highest level

• What constrains your highest level? 

• Parameters unknown so priors are flat

• So PEB at the highest level = classical approach

• BUT important differences between an SPM and a 
PPM:

• An SPM has uniform specificity (specificity = 1-α)

• A PPM has uniform effect size with uniform 
confidence because it varies voxel-by-voxel with 
the variance of the priors



Putting it another way: PPMs vs. SPMs

• When you threshold a PPM you are specifying a 

desired effect size

• But for an SPM, if a voxel survives thresholding it 

could be a big effect with relatively high variance 

but it could also be a small effect with low 

variance…

• … and as you increase the number of scans 

and/or subjects, probability of a very small effect 

surviving increases 



PPMs vs. SPMs continued

• Bayesian inference is generally more specific than 

classical inference (except when variance of priors 

is very large)

• The posterior probability is the same irrespective 

of whether one voxel or the entire brain was 

analysed…

• …so no multiple comparisons problem!





Wonderful! Why doesn’t everyone use it?

• Disadvantages:

– Computationally demanding

– Not yet readily accepted technique in the neuroimaging 

community?

– It’s not magic. It isn’t better than classical inference for 

a single voxel or subject, but it is the best estimate on 

average over voxels or subjects



Bayesian Estimation in SPM5



Other Bayesian applications in neuroimaging

• “Variational Bayes” – new to SPM5, constrains data at 

the voxel (1st) level using “shrinkage priors” (assume 

overall effect is zero) with prior precision estimated 

from the data for each brain slice

• Dynamic Causal Modelling (DCM) uses Bayesian 

constraints on the connections between brain areas 

and their dynamics

• EEG and MEG use Bayesian constraints on source 

reconstruction
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