(4)

- (b) Define Hasse Diagram & write procedure to construct a Hasse Diagram. 7½
 Construct a Hasse Diagram for the partial ordering { (A,B) | A⊆B} on the power set P(S) where S = {a, b, c}.
- (a) Define Lattice. Also describe it's properties. 7¹/₂
 - (b) Prove that product of two Lattices is a Lattice. $7\frac{1}{2}$

Unit-IV

8. (a) If
$$u = \sin^{-1} \frac{x^2 + y^2}{x + y}$$
, then show that

$$x \frac{\partial u}{\partial x} y \frac{\partial u}{\partial y} = \tan u$$
 7 $\frac{\gamma}{2}$

(b) If u = log
$$(x^3+y^3+z^3 - 3xyz)$$
 then show
that $7\frac{1}{2}$

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}$$

- 9. (a) State & Prove Euler's Theorem. 71/2
 - (b) Solve the following using Chain Rule.71/2

(i)
$$y = (4x - x^{-5})^{1/2}$$

(ii) $y = 2^{\cot x}$

(Printed Pages 4)

Roll No. _____

SFS-4702

B.C.A. (Semester-II) Examination, May 2015 Mathematics-II Paper-V (BCA-S-110)

Time Allowed : Three Hours] [Maximum Marks :100

- Note : Answer five questions in all. Question No. 1 is compulsory and attempt one question from each of the four Units I, II, III & IV.
- 1. Answer the following : $4 \times 10 = 40$
 - (a) Define Finite set, Infinite Set, Singleton set and Universal set with Examples.
 - (b) If A = {1, 2, 3, 4, 5, 6}, B=(3, 6, 8, 12, 17, 18), then find
 - (i) A B
 - (ii) B A
 - (c) What do you understand by Reflexive relation & Irreflexive relation? Illustrate with an example.

SFS-4702

(2)

- (d) Define Function. Differentiate between onto Function & Into function.
- (e) Define Domain & Range of Relation. Give example.
- (f) If X= (1, 2, 3, 4, 5, 6}, then / is a partial order relation on χ. Draw the Hasse Diagram of (X, χ).
- (g) If $u = x^2y + y^2z + z^2x$, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = (x + y + z)^2$
- (h) Discuss change of variable?
- (i) Define Duality
- (j) Differentiate $y = \sqrt{13x^2 5x + 8}$ by chain Rule.

Unit-I

- (a) Define sets. Also discuss it's types & algebric laws of operations of sets. 7¹/₂
 - (b) (i) Show that $(A \cap B)' = A' \cup B'$
 - (ii) $A \cup B = B \cup A$ where A, B are any set. $7\frac{1}{2}$
- 3. (a) Define ordered pairs and Cartesian Product. Also discuss the properties of Cartesian Product. $7\frac{1}{2}$

(3)

- (b) (i) Prove that $7\frac{1}{2}$ A×(B∩C) = (A × B) ∩ (A ×C)
 - (ii) If A = {4, 5, 7, 8, 10}, B = {4, 5, 9} and C={1, 4, 6, 9} then verify that

$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Unit-II

- 4. (a) Define Partial Order Relation. Is the greater or equal (≥) relation on the set of integers z is a Partial Order Relation? Prove it. 71/2
 - (b) If R be a relation in the set of Integers \neq defined by R={(x, y): x \in z, y \in z, (x y) is divisible by 6}, then show that R is an equivalence Relation. $7\frac{1}{2}$
- 5. (a) (i) Discuss functions & it's types. $7\frac{1}{2}$
 - (ii) Show that the function f(x) = x³ and g(x) = x^{1/3} for all x∈R are inverse of one another.
 - (b) Show that if f: A→B& g: B→C be one to one onto function, then g of is also one to one onto and (gof)⁻¹ = f⁻¹o g⁻¹. 7½ Unit-III
- 6. (a) (i) Define Poset & chain.
 - (ii) Show that the set Z^+ for all positive integers under divisibility relation forms a poset. $7\frac{1}{2}$

SFS-4702

SFS-4702

P.T.O.